Elastic electron-proton scattering cross sections were measured at backward angles (80°-90°) in the laboratory for four-momentum transfers between 7 F−2 and 45 F−2. Experimental errors range from 3.1% to 5.3%, including a systematic error estimated to be 1.9% added in quadrature. Electric and magnetic form factors are computed from all the recent data in this q2 range, with allowance made for possible normalization differences. The results show a deviation from the scaling law.
No description provided.
No description provided.
No description provided.
Differential cross sections for electrons scattered inelastically from hydrogen have been measured at 18°, 26°, and 34°. The range of incident energy was 4.5 to 18 GeV, and the range of four-momentum transfer squared was 1.5 to 21 (GeVc)2. With the use of these data in conjunction with previously measured data at 6° and 10°, the contributions from the longitudinal and transverse components of the exchanged photon have been separately determined. The values of the ratio of the photoabsorption cross sections σSσT are found to lie in the range 0 to 0.5. The question of scaling of 2MpW1 and νW2 as a function of ω is discussed, and scaling is verified for a large kinematic range. Also, a new scaling variable which reduces to ω in the Bjorken limit is introduced which extends the scaling region. The behavior of σT and σS is also discussed as a function of ν and q2. Various weighted sum rules of νW2 are evaluated.
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Axis error includes +- 0.0/0.0 contribution (0. TO 2.////DUE TO PION CONTAMINATION).
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
Electron-proton elastic-scattering cross sections have been measured at the Stanford Linear Accelerator Center for four-momentum transfers squared q 2 from 1.0 to 25.0 (GeVc)2. The electric (GEp) and magnetic (GMp) form factors of the proton were not separated, since angular distributions were not measured at each q 2. However, values for GMp were derived assuming various relations between GEp and GMp. Several theoretical models for the behavior of the proton magnetic form factor at high values of q 2 are compared with the data.
No description provided.
No description provided.
No description provided.
The p p → n n polarization has been measured at 8 GeV/ c and for − t values ranging from 0 up to 0.8 (GeV/ c ) 2 . A small and negative polarization has been found.
ERRORS INCLUDE STATISTICAL AS WELL AS RELATIVELY SMALL SYSTEMATIC EFFECTS.
We present experimental results on the K + n → K + n differential cross sections measured in deuterium at 13 momenta between 0.64 and 1.51 GeV/ c .
REACTION HAS A SPECTATOR PROTON. WHILE SOME DEUTERIUM CORRECTIONS HAVE BEEN APPLIED, THESE DATA ARE NOT DIVIDED BY THE DEUTERIUM FORM FACTOR APPEARING IN THE IMPULSE APPROXIMATION.
We have measured the cross section, the angular distribution, and the Λ polarization for the reaction π−p→ΛK0. A spark-chamber spectrometer was used to collect 8400 ΛK0 events at fourteen beam momenta near ΣK threshold. Our data do not show the prominent cross-section enhancement suggested by some previous experiments. However, detailed structure in the cross section and the angular distribution agrees well with a simple model which includes a cusp effect at ΣK threshold.
No description provided.
BACKWARD-FORWARD PRODUCTION ASYMMETRY.
AVERAGE LAMBDA POLARIZATION.
The polarization parameter P(t) for the reaction π−p→π0n has been measured at 3.5 and 5.0 GeV/c over the range 0.2<~−t<~1.8 (GeV/c)2. The two γ rays from the π0 decay were detected in a large lead-glass hodoscope. The results agree with the positive polarization values found in earlier Argonne National Laboratory data at −t<0.35 (GeV/c)2. P(t) drops to a small value near t=−0.6 (GeV/c)2 and remains the same out to t=−1.8 (GeV/c)2.
DATA POINTS MEASURED FROM SMALL GRAPH.