Date

Measurement and effective field theory interpretation of the photon-fusion production cross section of a pair of W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-24-019, 2026.
Inspire Record 3113152 DOI 10.17182/hepdata.167352

This analysis presents an observation of the photon-fusion production of W boson pairs using the CMS detector at the LHC. The total cross section of the W$^+$W$^-$ production in photon fusion is measured using proton-proton collision data with an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector in 2016$-$2018 at a center-of-mass energy of $\sqrt{s}$ = 13 TeV. Events are selected in the final state with one isolated electron and one isolated muon, and no additional tracks associated with the electron-muon production vertex. The total and fiducial production cross sections are 643$^{+82}_{-78}$ fb and 3.96$^{+0.53}_{-0.51}$ fb, respectively, in agreement with the standard model predictions of 631 $\pm$ 126 fb and 3.87 $\pm$ 0.77 fb. This agreement enables stringent constraints to be imposed on anomalous quartic gauge couplings within a dimension-8 effective field theory framework.

8 data tables

Normalized simulated $N_{tracks}$ distributions for signal and background processes.

Normalized simulated acoplanarity distributions for signal and background processes. The acoplanarity distribution is shown for events with $N_{tracks}=0$.

Observed and predicted $p_{T}^{e\mu}$ distributions for events with $N_{tracks}=0$, using 2016--2018 data. The distributions are shown after the maximum likelihood fit to the data ('postfit distributions'). The observed data and their associated Poissonian statistical uncertainty are shown with black markers with vertical error bars. The uncertainty band accouts for all sources of background and signal uncertainty, systematic as well as statistical, after the fit. The last bin includes the overflow. The lower panels show the ratio of data to sum of signal and background contributions, before (prefit, open red circles) and after (black full markers) the maximum likelihood fit.

More…

Measurement of the $Υ$(1S), $Υ$(2S), and $Υ$(3S) differential cross sections in pp collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-004, 2026.
Inspire Record 3112520 DOI 10.17182/hepdata.167435

The production cross sections of the $Υ$(1S), $Υ$(2S), and $Υ$(3S) mesons are measured in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV, using a data sample collected in 2022 by the CMS experiment and corresponding to an integrated luminosity of 37.4 fb$^{-1}$. The measurement is performed in the $μ^+μ^-$ decay channels, differentially as a function of transverse momentum in the 20$-$200 GeV range, in the $\lvert y\rvert$$\lt$ 0.6 and 0.6 $\lt$$\lvert y\rvert$$\lt$ 1.2 rapidity intervals.

11 data tables

Differential cross section times branching fraction for Upsilon(1S) -> mu+ mu-, measured in the rapidity range |y| < 0.6. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.1 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.

Differential cross section times branching fraction for Upsilon(1S) -> mu+ mu-, measured in the rapidity range 0.6 < |y| < 1.2. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.1 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.

Differential cross section times branching fraction for Upsilon(2S) -> mu+ mu-, measured in the rapidity range |y| < 0.6. This table corresponds to Figure 2 (left panel for |y|<0.6, right panel for 0.6<|y|<1.2) and Table A.2 in the paper. Results assume unpolarized production; polarization correction factors are provided in Table 6.

More…

Search for heavy resonances decaying into two Higgs bosons in the $\mathrm{b\bar{b}}τ^+τ^-$ final state in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-014, 2026.
Inspire Record 3112692 DOI 10.17182/hepdata.166218

A search is presented for massive narrow-width resonances in the mass range of 1$-$4.5 TeV, decaying into pairs of Higgs bosons (HH). The search uses proton-proton collision data at a center-of-mass energy of 13 TeV collected with the CMS detector at the CERN LHC during 2016$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The analysis targets final states where one Higgs boson decays into a pair of bottom quarks and the other into a pair of tau leptons, X $\to$ HH $\to$$\mathrm{b\bar{b}}τ^+τ^-$. It uses a single large jet to reconstruct the H $\to$$\mathrm{b\bar{b}}$ decay, while the H $\to$$τ^+τ^-$ decay products can either be contained within a single large jet or appear as two isolated tau leptons. The observed data are consistent with standard model background expectations. Upper limits at 95% confidence level are set on the production cross section for resonant HH production for masses between 1 and 4.5 TeV. This analysis sets the most sensitive limits to date on X $\to$ HH $\to$ $\mathrm{b\bar{b}}τ^+τ^-$ decays in the mass range of 1.4 to 4.5 TeV.

8 data tables

Distribution of the invariant mass of the di-$\tau$ system, reconstructed with the FastMTT algorithm, after the full event selection in the $\tau_{\mathrm{h}}\tau_{\mathrm{h}}$ channel. The data (solid circles) are compared to the background simulation (filled histograms), where the gray bands represent the total background uncertainty, obtained from the post-fit values of the dominant systematic uncertainties and the statistical uncertainties in the simulated samples. The $X\to HH$ signal simulation (solid red line) is overlaid and normalized to $\sigma(X\to HH)=0.1~\mathrm{pb}$ for illustration. The ratio between the data and the total expected background contribution is shown in the lower panel, where a solid black triangle indicates those bins where the ratio exceeds the axis range.

Distribution of the invariant mass of the di-$\tau$ system, reconstructed with the FastMTT algorithm, after the full event selection in the $\ell\tau_{\mathrm{h}}$ channel. The data (solid circles) are compared to the background simulation (filled histograms), where the gray bands represent the total background uncertainty, obtained from the post-fit values of the dominant systematic uncertainties and the statistical uncertainties in the simulated samples. The $X\to HH$ signal simulation (solid red line) is overlaid and normalized to $\sigma(X\to HH)=0.1~\mathrm{pb}$ for illustration. The ratio between the data and the total expected background contribution is shown in the lower panel, where a solid black triangle indicates those bins where the ratio exceeds the axis range.

Distribution of $M_{\mathrm{H}(\mathrm{b}\bar{\mathrm{b}})}$ obtained from the leading AK8 jet in the event after the full event selection for the $\tau_{\mathrm{h}}\tau_{\mathrm{h}}$ channel. The signal-enriched region (SR) is defined as $100 < M_{\mathrm{H}(\mathrm{b}\bar{\mathrm{b}})} < 150\ \mathrm{GeV}$. The sideband (SB) is immediately adjacent to the SR, on either side. The data (solid circles) are compared to the background simulation (filled histograms), where the gray bands represent the total background uncertainty, obtained from the post-fit values of the dominant systematic uncertainties and the statistical uncertainties in the simulated samples. The $X\to HH$ signal simulation (solid red line) is overlaid and normalized to $\sigma(X\to HH)=0.1~\mathrm{pb}$ for illustration. The ratio between the data and the total expected background contribution is shown in the lower panel, where a solid black triangle indicates those bins where the ratio exceeds the axis range.

More…

Strategy and performance of the CMS long-lived particle trigger program in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-23-016, 2026.
Inspire Record 3111434 DOI 10.17182/hepdata.165445

In the physics program of the CMS experiment during the CERN LHC Run 3, which started in 2022, the long-lived particle triggers have been improved and extended to expand the scope of the corresponding searches. These dedicated triggers and their performance are described in this paper, using several theoretical benchmark models that extend the standard model of particle physics. The results are based on proton-proton collision data collected with the CMS detector during 2022$-$2024 at a center-of-mass energy of 13.6 TeV, corresponding to integrated luminosities of up to 123 fb$^{-1}$.

119 data tables

Offline standard tracking efficiency during Run~3 for different tracking iterations, as a function of simulated radial position of the track production vertex. In the figure, $t\bar{t}$ simulation for 2025 conditions and an average PU of 62 is used, and the tracks are required to have $\mathrm{p_T}>0.9$ GeV and $|\eta|<2.5$. The tracking efficiency is defined as the ratio of the simulated tracks (with the aforementioned selection requirements) geometrically matched to a reconstructed track, divided by the total simulated tracks passing the selections.

Overall standard tracking efficiency at the HLT during Run~3, as a function of the simulated radial position of the track production vertex. In the figure, $t\bar{t}$ simulation for 2025 conditions and an average PU of 62 is used, and the tracks are required to have $\mathrm{p_T}>0.9$ GeV and $|\eta|<2.5$. The tracking efficiency is defined as the ratio of the simulated tracks (with the aforementioned selection requirements) geometrically matched to a reconstructed track, divided by the total simulated tracks passing the selections.

L1T+HLT efficiency of the MET+IsoTrk trigger as a function of the number of tracker layers with valid measurements of the track that pass the offline requirements, in $\tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0}$+X simulated events for 2022 conditions, where $m_{\tilde{\chi}_{1}^{\pm}}=900$ GeV and $\tilde{\chi}_{1}^{0}$ is nearly mass-degenerate with $\tilde{\chi}_{1}^{\pm}$. The efficiency is shown for LLPs with $c\tau=$ 10, 100, and 1000 cm in black, blue, and red, respectively.

More…

Search for the pair production of long-lived supersymmetric partners of the tau lepton in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-020, 2026.
Inspire Record 3111398 DOI 10.17182/hepdata.166010

Gauge-mediated supersymmetry-breaking models provide a strong motivation to search for a supersymmetric partner of the tau lepton (stau) with a macroscopic lifetime. Long-lived stau decays produce tau leptons that are displaced from the primary proton-proton interaction vertex, leading to an unconventional signature. This paper presents a search for the direct production of long-lived staus decaying within the CMS tracker volume in proton-proton collisions at $\sqrt{s}$ = 13 TeV, performed for the first time with an identification algorithm based on a graph neural network dedicated to displaced tau leptons. The data sample, corresponding to an integrated luminosity of 138 fb$^{-1}$, was recorded with the CMS experiment at the CERN LHC between 2016 and 2018. This search excludes, at 95% confidence level, stau masses, $m_\tildeτ$, in the 126$-$260 (906$-$425) GeV range for a proper decay length of 50 mm in the maximally mixed (mass-degenerate) scenario, while for $m_\tildeτ $ = 200 GeV, stau proper decay lengths are excluded in the range 21$-$94 (6$-$333) mm. These results improve the exclusion limits compared to previous searches, and extend the parameter space explored in the context of supersymmetry.

37 data tables

Distributions of $p_\text{T, j2}$ for data and the predicted background, in the signal region. The signal distributions expected in the maximally mixed scenario for a few representative sets of $(m_{\tilde{\tau}} [\text{GeV}], c\tau_{0} [\text{mm}])$ values are overlaid: (100, 10), (100, 50), (100, 100), (200, 10), (200, 50), (200, 100), (300, 10), (300, 50), and (300, 100). In bins where the observed yield is zero, the Garwood interval at 68% CL is shown as a positive uncertainty. The last bin includes the overflow.

Distributions of $p^\text{miss}_\text{T}$ for data and the predicted background, in the signal region. The signal distributions expected in the maximally mixed scenario for a few representative sets of $(m_{\tilde{\tau}} [\text{GeV}], c\tau_{0} [\text{mm}])$ values are overlaid: (100, 10), (100, 50), (100, 100), (200, 10), (200, 50), (200, 100), (300, 10), (300, 50), and (300, 100). In bins where the observed yield is zero, the Garwood interval at 68% CL is shown as a positive uncertainty. The last bin includes the overflow.

Distributions of $m_\text{T2}$ for data and the predicted background, in the signal region. The signal distributions expected in the maximally mixed scenario for a few representative sets of $(m_{\tilde{\tau}} [\text{GeV}], c\tau_{0} [\text{mm}])$ values are overlaid: (100, 10), (100, 50), (100, 100), (200, 10), (200, 50), (200, 100), (300, 10), (300, 50), and (300, 100). In bins where the observed yield is zero, the Garwood interval at 68% CL is shown as a positive uncertainty. The last bin includes the overflow.

More…

Combination of searches for heavy vector boson resonances in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-25-003, 2026.
Inspire Record 3109637 DOI 10.17182/hepdata.166217

A combined statistical analysis of searches for heavy vector boson resonances decaying into pairs of W, Z, or Higgs bosons, as well as into quark pairs ($\mathrm{q\bar{q}}$, $\mathrm{b\bar{b}}$, $\mathrm{t\bar{t}}$, $\mathrm{t\bar{b}}$) or lepton pairs ($\ell^+\ell^-$, $\ell\barν$), with $\ell =$ e, $μ$, $τ$, is presented. The results are based on proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$, collected by the CMS experiment from 2016 to 2018. No significant deviation from the expectations of the standard model is observed. The results are interpreted in the simplified heavy vector triplet (HVT) framework, setting 95% confidence level upper limits on the production cross sections and coupling strengths to standard model particles or the HVT bosons. The results exclude HVT resonances with masses below 5.5 TeV in a weakly coupled scenario, below 4.8 TeV in a strongly coupled scenario, and up to 2.0 TeV in the case of production via vector boson fusion. The combination provides the most stringent constraints to date on new phenomena predicted by the HVT model.

22 data tables

Expected and observed 95% CL upper limits on the V'boson production cross section as functions of the resonance mass mV' shown separately for the V' → quarks category. The limits are evaluated in the HVT model A scenario.

Expected and observed 95% CL upper limits on the V'boson production cross section as functions of the resonance mass mV' shown separately for the V' → leptons category. The limits are evaluated in the HVT model A scenario.

Expected and observed 95% CL upper limits on the V' boson production cross section as functions of the resonance mass mV' shown separately for the V' → bosons category. The limits are evaluated in the HVT model B scenario.

More…

Search for charged Higgs bosons decaying into top and bottom quarks in lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-008, 2025.
Inspire Record 3096734 DOI 10.17182/hepdata.161621

A search is presented for charged Higgs bosons (H$^\pm$) in proton-proton (pp) collision events via the pp $\to$ (b)H$^\pm$ processes, with H$^\pm$ decaying into top (t) and bottom (b) quarks. The search targets final states with one lepton, missing transverse momentum, and two or more b jets. The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. We search for charged Higgs bosons in the 200 GeV to 1 TeV mass range. The results are interpreted within the generalized two-Higgs-doublet model (g2HDM). This model predicts additional Yukawa couplings of the Higgs bosons to the top quark $ρ_\mathrm{tt}$, the top and charm quark $ρ_\mathrm{tc}$, and the top and up quark $ρ_\mathrm{tu}$. This search focuses on the real components of $ρ_\mathrm{tt}$ and $ρ_\mathrm{tc}$, which are probed up to values of unity. An excess is observed with respect to the standard model expectation with a local significance of 2.4 standard deviations for a signal with an H$^\pm$ boson mass ($m_{\mathrm{H}^\pm}$) of 600 GeV. Limits are derived on the product of the cross section $σ$(pp $\to$ (b)H$^\pm$) and branching fraction $\mathcal{B}$(H$^\pm$$\to$ tb, t $\to$ b$\ellν$), where $\ell$ = e, $μ$. The values of $ρ_\mathrm{tc} \gtrsim$ 0.15$-$0.5 are excluded at 95% confidence level, depending on the $m_{\mathrm{H}^\pm}$ and $ρ_\mathrm{tt}$ assumptions. The results represent the first search for charged Higgs bosons within the g2HDM framework and complement the existing results on additional neutral Higgs bosons.

23 data tables

The postfit pDNN distributions in the SR e 2b2j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

The postfit pDNN distributions in the SR $\mu$ 2b2j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

The postfit pDNN distributions in the SR e 3b3j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

More…

Characterization of the quantum state of top quark pairs produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the beam and helicity bases

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-25-016, 2025.
Inspire Record 3094398 DOI 10.17182/hepdata.166080

Measurements of the spin correlation coefficients in the beam basis are presented for top quark-antiquark ($\mathrm{t\bar{t}}$) systems produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV collected by the CMS experiment in 2016$-$2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$. The $\mathrm{t\bar{t}}$ system is reconstructed from final states containing an electron or muon, and jets. Together with the previously reported results in the helicity basis, these measurements are used to decompose the system into the Bell and spin eigenstates in various kinematic regions. The spin correlation coefficients are also used to evaluate properties of the $\mathrm{t\bar{t}}$ quantum state, such as the purity, von Neumann entropy, and entanglement. All results are consistent with standard model predictions.

32 data tables

Measured spin correlation coefficients in beam basis for $m(t\bar{t})$ vs. $|cos(\theta)|$ bins

Covariance for spin correlation coefficients in beam basis for $m(t\bar{t})$ vs. $|cos(\theta)|$ bins

Measured spin correlation coefficients in beam basis for $p_{T}(t)$ vs. $|cos(\theta)|$ bins

More…

Search for emerging jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-225, 2025.
Inspire Record 3069355 DOI 10.17182/hepdata.167179

A search is presented for emerging jets using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV, collected by the ATLAS experiment between 2015 and 2018. The search looks for the existence of a dark sector with symmetries similar to those in quantum chromodynamics. This dark sector is populated with dark quarks, which undergo showering similar to quarks in the Standard Model, leading to a high multiplicity of long-lived dark hadrons within a dark jet. These dark hadrons subsequently decay to Standard Model particles via a new heavy scalar mediating particle $ϕ$. This results in jets which contain multiple displaced vertices, known as emerging jets. This analysis targets four-jet topologies, with two emerging jets and two Standard Model jets, resulting from the decay of pair-produced scalar mediators. No significant excess above the Standard Model background is observed. For dark pion proper decay lengths of 20 mm, mediator masses are excluded between 1 TeV and 2 TeV assuming a dark pion mass of 20 GeV.

63 data tables

Comparison of the data with N<sub>DV</sub> &gt; 1 and the estimated background in the SR using the modified ABCD method. The division between the SR and CR is shown by the vertical dashed line. In the final fit, the bins with R &gt; 0.4 are combined into a single bin. Three selected signal samples are included for comparison.

95&percnt; CL upper limits as a function of (left) c&tau;<sub>&pi;<sub>d</sub></sub> and (right) M<sub>&phi;</sub>. The upper plots show the expected and observed limits on &sigma;(pp &rarr;&phi;<sup>&dagger;</sup>&phi;) for m<sub>&pi;<sub>d</sub></sub> = 20&nbsp;GeV: (a) using M<sub>&phi;</sub> = 1.6&nbsp;TeV and (b) using c&tau;<sub>&pi;<sub>d</sub></sub> = 20&nbsp;mm. The lower plots show a comparison of the observed limits for all three dark pion masses: (c) using M<sub>&phi;</sub> = 1.4&nbsp;TeV, and (d) using c&tau;<sub>&pi;<sub>d</sub></sub> = 1&nbsp;mm. The mediator mass-dependent theoretical cross-section is given with the band corresponding to the uncertainty from NNLL-Fast.

95&percnt; CL upper limits as a function of (left) c&tau;<sub>&pi;<sub>d</sub></sub> and (right) M<sub>&phi;</sub>. The upper plots show the expected and observed limits on &sigma;(pp &rarr;&phi;<sup>&dagger;</sup>&phi;) for m<sub>&pi;<sub>d</sub></sub> = 20&nbsp;GeV: (a) using M<sub>&phi;</sub> = 1.6&nbsp;TeV and (b) using c&tau;<sub>&pi;<sub>d</sub></sub> = 20&nbsp;mm. The lower plots show a comparison of the observed limits for all three dark pion masses: (c) using M<sub>&phi;</sub> = 1.4&nbsp;TeV, and (d) using c&tau;<sub>&pi;<sub>d</sub></sub> = 1&nbsp;mm. The mediator mass-dependent theoretical cross-section is given with the band corresponding to the uncertainty from NNLL-Fast.

More…

Discovery of suppressed charged-particle production in ultrarelativistic oxygen-oxygen collisions

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-008, 2025.
Inspire Record 3068407 DOI 10.17182/hepdata.165512

A hot and dense state of nuclear matter, known as the quark-gluon plasma, is created in collisions of ultrarelativistic heavy nuclei. Highly energetic quarks and gluons, collectively referred to as partons, lose energy as they travel through this matter, leading to suppressed production of particles with large transverse momenta ($p_\mathrm{T}$). Conversely, high-$p_\mathrm{T}$ particle suppression has not been seen in proton-lead collisions, raising questions regarding the minimum system size required to observe parton energy loss. Oxygen-oxygen (OO) collisions examine a region of effective system size that lies between these two extreme cases. The CMS detector at the CERN LHC has been used to quantify charged-particle production in inclusive OO collisions for the first time via measurements of the nuclear modification factor ($R_\mathrm{AA}$). The $R_\mathrm{AA}$ is derived by comparing particle production to expectations based on proton-proton (pp) data and has a value of unity in the absence of nuclear effects. The data for OO and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV correspond to integrated luminosities of 6.1 nb$^{-1}$ and 1.02 pb$^{-1}$, respectively. The $R_\mathrm{AA}$ is below unity with a minimum of 0.69 $\pm$ 0.04 around $p_\mathrm{T}$ = 6 GeV. The data exhibit better agreement with theoretical models incorporating parton energy loss as compared to baseline models without energy loss.

3 data tables

Inclusive charged particle spectra for pp collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle spectra for OO collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle R_{AA} for 5.36 TeV OO collisions for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.