Date

Combination of searches for heavy vector boson resonances in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-25-003, 2026.
Inspire Record 3109637 DOI 10.17182/hepdata.166217

A combined statistical analysis of searches for heavy vector boson resonances decaying into pairs of W, Z, or Higgs bosons, as well as into quark pairs ($\mathrm{q\bar{q}}$, $\mathrm{b\bar{b}}$, $\mathrm{t\bar{t}}$, $\mathrm{t\bar{b}}$) or lepton pairs ($\ell^+\ell^-$, $\ell\barν$), with $\ell =$ e, $μ$, $τ$, is presented. The results are based on proton-proton collision data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$, collected by the CMS experiment from 2016 to 2018. No significant deviation from the expectations of the standard model is observed. The results are interpreted in the simplified heavy vector triplet (HVT) framework, setting 95% confidence level upper limits on the production cross sections and coupling strengths to standard model particles or the HVT bosons. The results exclude HVT resonances with masses below 5.5 TeV in a weakly coupled scenario, below 4.8 TeV in a strongly coupled scenario, and up to 2.0 TeV in the case of production via vector boson fusion. The combination provides the most stringent constraints to date on new phenomena predicted by the HVT model.

22 data tables

Expected and observed 95% CL upper limits on the V'boson production cross section as functions of the resonance mass mV' shown separately for the V' → quarks category. The limits are evaluated in the HVT model A scenario.

Expected and observed 95% CL upper limits on the V'boson production cross section as functions of the resonance mass mV' shown separately for the V' → leptons category. The limits are evaluated in the HVT model A scenario.

Expected and observed 95% CL upper limits on the V' boson production cross section as functions of the resonance mass mV' shown separately for the V' → bosons category. The limits are evaluated in the HVT model B scenario.

More…

Search for charged Higgs bosons decaying into top and bottom quarks in lepton+jets final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-008, 2025.
Inspire Record 3096734 DOI 10.17182/hepdata.161621

A search is presented for charged Higgs bosons (H$^\pm$) in proton-proton (pp) collision events via the pp $\to$ (b)H$^\pm$ processes, with H$^\pm$ decaying into top (t) and bottom (b) quarks. The search targets final states with one lepton, missing transverse momentum, and two or more b jets. The analysis is based on data collected at a center-of-mass energy of 13 TeV with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. We search for charged Higgs bosons in the 200 GeV to 1 TeV mass range. The results are interpreted within the generalized two-Higgs-doublet model (g2HDM). This model predicts additional Yukawa couplings of the Higgs bosons to the top quark $ρ_\mathrm{tt}$, the top and charm quark $ρ_\mathrm{tc}$, and the top and up quark $ρ_\mathrm{tu}$. This search focuses on the real components of $ρ_\mathrm{tt}$ and $ρ_\mathrm{tc}$, which are probed up to values of unity. An excess is observed with respect to the standard model expectation with a local significance of 2.4 standard deviations for a signal with an H$^\pm$ boson mass ($m_{\mathrm{H}^\pm}$) of 600 GeV. Limits are derived on the product of the cross section $σ$(pp $\to$ (b)H$^\pm$) and branching fraction $\mathcal{B}$(H$^\pm$$\to$ tb, t $\to$ b$\ellν$), where $\ell$ = e, $μ$. The values of $ρ_\mathrm{tc} \gtrsim$ 0.15$-$0.5 are excluded at 95% confidence level, depending on the $m_{\mathrm{H}^\pm}$ and $ρ_\mathrm{tt}$ assumptions. The results represent the first search for charged Higgs bosons within the g2HDM framework and complement the existing results on additional neutral Higgs bosons.

23 data tables

The postfit pDNN distributions in the SR e 2b2j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

The postfit pDNN distributions in the SR $\mu$ 2b2j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

The postfit pDNN distributions in the SR e 3b3j assuming $m_{H^\pm} = 600$ GeV. Postfit signal for $m_{H^\pm} = 600$ GeV is also shown. Beneath plot the ratio of data to predictions is shown.

More…

Characterization of the quantum state of top quark pairs produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV using the beam and helicity bases

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-25-016, 2025.
Inspire Record 3094398 DOI 10.17182/hepdata.166080

Measurements of the spin correlation coefficients in the beam basis are presented for top quark-antiquark ($\mathrm{t\bar{t}}$) systems produced in proton-proton collisions at $\sqrt{s}$ = 13 TeV collected by the CMS experiment in 2016$-$2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$. The $\mathrm{t\bar{t}}$ system is reconstructed from final states containing an electron or muon, and jets. Together with the previously reported results in the helicity basis, these measurements are used to decompose the system into the Bell and spin eigenstates in various kinematic regions. The spin correlation coefficients are also used to evaluate properties of the $\mathrm{t\bar{t}}$ quantum state, such as the purity, von Neumann entropy, and entanglement. All results are consistent with standard model predictions.

32 data tables

Measured spin correlation coefficients in beam basis for $m(t\bar{t})$ vs. $|cos(\theta)|$ bins

Covariance for spin correlation coefficients in beam basis for $m(t\bar{t})$ vs. $|cos(\theta)|$ bins

Measured spin correlation coefficients in beam basis for $p_{T}(t)$ vs. $|cos(\theta)|$ bins

More…

Search for light sterile neutrinos with two neutrino beams at MicroBooNE

The MicroBooNE collaboration Abratenko, P. ; Andrade Aldana, D. ; Arellano, L. ; et al.
Nature 648 (2025) 64-69, 2025.
Inspire Record 3088922 DOI 10.17182/hepdata.166435

<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs.  <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub>  →  <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>

3 data tables

14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.

14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.


Version 2
Searches for Light Dark Matter and Evidence of Coherent Elastic Neutrino-Nucleus Scattering of Solar Neutrinos with the LUX-ZEPLIN (LZ) Experiment

The LZ collaboration Akerib, D.S. ; Al Musalhi, A.K. ; Alder, F. ; et al.
2025.
Inspire Record 3091049 DOI 10.17182/hepdata.167350

We present searches for light dark matter (DM) with masses 3-9 GeV/$c^2$ in the presence of coherent elastic neutrino-nucleus scattering (CE$ν$NS) from $^{8}$B solar neutrinos with the LUX-ZEPLIN experiment. This analysis uses a 5.7 tonne-year exposure with data collected between March 2023 and April 2025. In an energy range spanning 1-6 keV, we report no significant excess of events attributable to dark matter nuclear recoils, but we observe a significant signal from $^{8}$B CE$ν$NS interactions that is consistent with expectation. We set world-leading limits on spin-independent and spin-dependent-neutron DM-nucleon interactions for masses down to 5 GeV/$c^2$. In the no-dark-matter scenario, we observe a signal consistent with $^{8}$B CE$ν$NS events, corresponding to a $4.5σ$ statistical significance. This is the most significant evidence of $^{8}$B CE$ν$NS interactions and is enabled by robust background modeling and mitigation techniques. This demonstrates LZ's ability to detect rare signals at keV-scale energies.

5 data tables

90% CL WIMP SI cross sections, including sensitivities

90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties

90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties

More…

Baryon anti-Baryon Photoproduction Cross Sections off the Proton

Afzal, F. ; Albrecht, M. ; Amaryan, M. ; et al.
2025.
Inspire Record 3075566 DOI 10.17182/hepdata.166629

The GlueX experiment at Jefferson Lab has observed $p\bar{p}$ and, for the first time, $Λ\barΛ$ and $p\barΛ$ photoproduction from a proton target at photon energies up to 11.6 GeV. The angular distributions are forward peaked for all produced pairs, consistent with Regge-like $t$-channel exchange. Asymmetric wide-angle anti-baryon distributions show the presence of additional processes. In a phenomenological model, we find consistency with a double $t$-channel exchange process where anti-baryons are created only at the middle vertex. The model matches all observed distributions with a small number of free parameters. In the hyperon channels, we observe a clear distinction between photoproduction of the $Λ\barΛ$ and $p\barΛ$ systems but general similarity to the $p\bar{p}$ system. We report both total cross sections and cross sections differential with respect to momentum transfer and the invariant masses of the created particle pairs. No narrow resonant structures were found in these reaction channels. The suppression of $s\bar{s}$ quark pairs relative to $d\bar{d}$ quark pairs is similar to what has been seen in other reactions.

10 data tables

Measured $\frac{d\sigma}{dm_{\Lambda\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{\Lambda \bar{\Lambda}\} p$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{\Lambda\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.05 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 19% (not included in the table), with contributions of 5% from kinematic fitting, 10% from data selection, 5% from flux normalization, 13% from tracking efficiency, 3% from model dependence, and 6% from run-period variations.

Measured $\frac{d\sigma}{dm_{p\bar{\Lambda}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{\Lambda}\} \Lambda$ including data of $6.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 10 energy bins (each as a column in the table). The observable $m_{p\bar{\Lambda}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.1 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 22% (not included in the table), with contributions of 2% from kinematic fitting, 10% from data selection, 5% from flux normalization, 15% from tracking efficiency, 3% from model dependence, and 10% from run-period variations.

Measured $\frac{d\sigma}{dm_{p\bar{p}}}~[\mathrm{nb/GeV}]$ for reaction $\gamma p\to \{p \bar{p}\} p$ including data of $3.5 \leq E_{\gamma} \leq 11.5$ [GeV], splitted in 15 energy bins (each as a column in the table). The observable $m_{p\bar{p}}$ is in unit of $[\mathrm{nb/GeV}]$ and is divided into bins of width 0.044 $[\mathrm{GeV}]$ (each as a row in the table). The global systematic uncertainty is 13% (not included in the table), with contributions of 8% from kinematic fitting, 4% from data selection, 5% from flux normalization, 8% from tracking efficiency, 3% from model dependence, and 1% from run-period variations.

More…

Search for emerging jets in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-225, 2025.
Inspire Record 3069355 DOI 10.17182/hepdata.167179

A search is presented for emerging jets using 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s} = 13$ TeV, collected by the ATLAS experiment between 2015 and 2018. The search looks for the existence of a dark sector with symmetries similar to those in quantum chromodynamics. This dark sector is populated with dark quarks, which undergo showering similar to quarks in the Standard Model, leading to a high multiplicity of long-lived dark hadrons within a dark jet. These dark hadrons subsequently decay to Standard Model particles via a new heavy scalar mediating particle $ϕ$. This results in jets which contain multiple displaced vertices, known as emerging jets. This analysis targets four-jet topologies, with two emerging jets and two Standard Model jets, resulting from the decay of pair-produced scalar mediators. No significant excess above the Standard Model background is observed. For dark pion proper decay lengths of 20 mm, mediator masses are excluded between 1 TeV and 2 TeV assuming a dark pion mass of 20 GeV.

63 data tables

Comparison of the data with N<sub>DV</sub> &gt; 1 and the estimated background in the SR using the modified ABCD method. The division between the SR and CR is shown by the vertical dashed line. In the final fit, the bins with R &gt; 0.4 are combined into a single bin. Three selected signal samples are included for comparison.

95&percnt; CL upper limits as a function of (left) c&tau;<sub>&pi;<sub>d</sub></sub> and (right) M<sub>&phi;</sub>. The upper plots show the expected and observed limits on &sigma;(pp &rarr;&phi;<sup>&dagger;</sup>&phi;) for m<sub>&pi;<sub>d</sub></sub> = 20&nbsp;GeV: (a) using M<sub>&phi;</sub> = 1.6&nbsp;TeV and (b) using c&tau;<sub>&pi;<sub>d</sub></sub> = 20&nbsp;mm. The lower plots show a comparison of the observed limits for all three dark pion masses: (c) using M<sub>&phi;</sub> = 1.4&nbsp;TeV, and (d) using c&tau;<sub>&pi;<sub>d</sub></sub> = 1&nbsp;mm. The mediator mass-dependent theoretical cross-section is given with the band corresponding to the uncertainty from NNLL-Fast.

95&percnt; CL upper limits as a function of (left) c&tau;<sub>&pi;<sub>d</sub></sub> and (right) M<sub>&phi;</sub>. The upper plots show the expected and observed limits on &sigma;(pp &rarr;&phi;<sup>&dagger;</sup>&phi;) for m<sub>&pi;<sub>d</sub></sub> = 20&nbsp;GeV: (a) using M<sub>&phi;</sub> = 1.6&nbsp;TeV and (b) using c&tau;<sub>&pi;<sub>d</sub></sub> = 20&nbsp;mm. The lower plots show a comparison of the observed limits for all three dark pion masses: (c) using M<sub>&phi;</sub> = 1.4&nbsp;TeV, and (d) using c&tau;<sub>&pi;<sub>d</sub></sub> = 1&nbsp;mm. The mediator mass-dependent theoretical cross-section is given with the band corresponding to the uncertainty from NNLL-Fast.

More…

Discovery of suppressed charged-particle production in ultrarelativistic oxygen-oxygen collisions

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-008, 2025.
Inspire Record 3068407 DOI 10.17182/hepdata.165512

A hot and dense state of nuclear matter, known as the quark-gluon plasma, is created in collisions of ultrarelativistic heavy nuclei. Highly energetic quarks and gluons, collectively referred to as partons, lose energy as they travel through this matter, leading to suppressed production of particles with large transverse momenta ($p_\mathrm{T}$). Conversely, high-$p_\mathrm{T}$ particle suppression has not been seen in proton-lead collisions, raising questions regarding the minimum system size required to observe parton energy loss. Oxygen-oxygen (OO) collisions examine a region of effective system size that lies between these two extreme cases. The CMS detector at the CERN LHC has been used to quantify charged-particle production in inclusive OO collisions for the first time via measurements of the nuclear modification factor ($R_\mathrm{AA}$). The $R_\mathrm{AA}$ is derived by comparing particle production to expectations based on proton-proton (pp) data and has a value of unity in the absence of nuclear effects. The data for OO and pp collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 5.36 TeV correspond to integrated luminosities of 6.1 nb$^{-1}$ and 1.02 pb$^{-1}$, respectively. The $R_\mathrm{AA}$ is below unity with a minimum of 0.69 $\pm$ 0.04 around $p_\mathrm{T}$ = 6 GeV. The data exhibit better agreement with theoretical models incorporating parton energy loss as compared to baseline models without energy loss.

3 data tables

Inclusive charged particle spectra for pp collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle spectra for OO collisions at 5.36 TeV for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.

Inclusive charged particle R_{AA} for 5.36 TeV OO collisions for $3 < p_{T} (GeV) <103.6$. The errors represent statistical, systematics and normalization uncertainties.


Observation of long-range collective flow in OO and NeNe collisions and implications for nuclear structure studies

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIN-25-009, 2025.
Inspire Record 3062822 DOI 10.17182/hepdata.165513

The long-range collective flow of particles produced in oxygen-oxygen (OO) and neon-neon (NeNe) collisions is measured with the CMS detector at the CERN LHC. The data samples were collected at a center-of-mass energy per nucleon pair of 5.36 TeV, with integrated luminosities of 7 nb$^{-1}$ and 0.8 nb$^{-1}$ for OO and NeNe collisions, respectively. Two- and four-particle azimuthal correlations are measured over nearly five units of pseudorapidity. Significant elliptic ($v_2$) and triangular ($v_3$) flow harmonics are observed in both systems. The ratios of $v_n$ coefficients between NeNe and OO collisions reveal sensitivity to quadrupole correlations in the nuclear wave functions. Hydrodynamic models with $\textit{ab initio}$ nuclear structure inputs qualitatively reproduce the collision-overlap dependence of both the $v_n$ values and the NeNe to OO ratios. These measurements provide new constraints on hydrodynamic models for small collision systems and offer valuable input on the nuclear structure of $^{16}$O and $^{20}$Ne.

4 data tables

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in OO collisions at 5.36 TeV.

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$, $v_{3}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ values for charged particles as functions of centrality in NeNe collisions at 5.36 TeV.

The $v_{2}\{2,\lvert\Delta\eta\rvert>2\}$ and $v_{2}\{4\}$ ratios for charged particles as functions of centrality in NeNe to OO collisions at 5.36 TeV.

More…

Measurement of the $W$-boson angular coefficients and transverse momentum in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-188, 2025.
Inspire Record 2970689 DOI 10.17182/hepdata.166079

The angular distributions of Drell-Yan lepton pairs provide sensitive probes of the underlying dynamics of quantum chromodynamics (QCD) effects in vector-boson production. This paper presents for the first time the measurement of the full set of angular coefficients together with the differential cross-section as a function of the transverse momentum of the $W$ boson, in the full phase space of the decay leptons. The measurements are performed separately for the $W^-$ and $W^+$ channels. The analysis uses proton-proton collision data recorded by the ATLAS experiment at the Large Hadron Collider in 2017 and 2018, during special low-luminosity runs with a reduced number of interactions per bunch crossings (pile-up). The data correspond to an integrated luminosity of $338$ pb$^{-1}$ at a centre-of-mass energy of $\sqrt{s} = 13$ TeV. The low pile-up conditions enable an optimised reconstruction of the $W$ boson transverse momentum. All results agree with theory predictions incorporating finite-order QCD corrections up to next-to-next-to-leading-order in the strong coupling constant, $α_S$.

6 data tables

The measured angular coefficients for $W^-$ in bins of the $p_T$ of the W.

The measured angular coefficients for $W^+$ in bins of the $p_T$ of the W.

The measured differential cross-section for $W^-$ in bins of the $p_T$ of the $W$.

More…