The reaction ${n} {p} \to {p} {p} \pi^{-}$ has been studied in a kinematically complete measurement with a large acceptance time-of-flight spectrometer for incident neutron energies between threshold and 570 MeV. The proton-proton invariant mass distributions show a strong enhancement due to the pp($^{1}{S}_{0}$) final state interaction. A large anisotropy was found in the pion angular distributions in contrast to the reaction ${p}{p} \to {p}{p} \pi^{0}$. At small energies, a large forward/backward asymmetry has been observed. From the measured integrated cross section $\sigma({n}{p} \to {\rm p}{p} \pi^{-})$, the isoscalar cross section $\sigma_{01}$ has been extracted. Its energy dependence indicates that mainly partial waves with Sp final states contribute. Note: Due to a coding error, the differential cross sections ${d \sigma}/{d M_{pp}}$ as shown in Fig. 9 are too small by a factor of two, and inn Table 3 the differential cross sections ${d \sigma}/{d \Omega_{\pi}^{*}}$ are too large by a factor of $10/2\pi$. The integrated cross sections and all conclusions remain unchanged. A corresponding erratum has been submitted and accepted by European Physics Journal.
Differential cross sections DSIG/DOMEGA for excusive PI- production in N P interactions at incident kinetic energies 315, 345 and 375 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 405, 435 and 465 Mev after background subtraction and efficiency correction.
Differential cross sections DSIG/DOMEGA for exclusive PI- production in N Pinteractions at incident kinetic energies 495, 525 and 550 Mev after background subtraction and efficiency correction.
The cross section for the production of $\omega$ mesons in proton-proton collisions has been measured in a previously unexplored region of incident energies. Cross sections were extracted at 92 MeV and 173 MeV excess energy, respectively. The angular distribution of the $\omega$ at $\epsilon$=173 MeV is strongly anisotropic, demonstrating the importance of partial waves beyond pure s-wave production at this energy.
Measured cross sections for omega production.
Angular distribution of the OMEGA in the overall centre-of-momentum frame. Statistical error only.
The present data support a large anisotropy in accordance with phase shift predictions and in contrast to another recent experiment.
Measured deuteron angular distribution in the c.m. system. The errors shown are statistical only and there is an additional 10 PCT systematic uncertainty on the overall normalisation.
Legendre polynomial coefficients from a second order and fourth order fit.
Total cross section from second order fit.
The exclusive production cross sections for $\omega$ and $\phi$ mesons have been measured in proton-proton reactions at $p_{lab}=3.67$ GeV/c. The observed $\phi/\omega$ cross section ratio is $(3.8\pm0.2^{+1.2}_{-0.9})\times 10^{-3}$. After phase space corrections, this ratio is enhanced by about an order of magnitude relative to naive predictions based upon the Okubo-Zweig-Iizuka (OZI) rule, in comparison to an enhancement by a factor $\sim 3$ previously observed at higher beam momenta. The modest increase of this enhancement near the production threshold is compared to the much larger increase of the $\phi/\omega$ ratio observed in specific channels of $\bar pp$ annihilation experiments. Furthermore, differential cross section results are also presented which indicate that although the $\phi$ meson is predominantly produced from a $^3P_1$ proton-proton entrance channel, other partial waves contribute significantly to the production mechanism at this beam momentum.
No description provided.
Differential cross section of OMEGA production.
Differential cross section of PHI production.
The ratio of the total exclusive production cross sections for $\eta\prime$ and $\eta$ mesons has been measured in the $pp$ reaction at $p_{beam}=3.67$ GeV/c. The observed $\eta\prime/\eta$ ratio is $(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2}$ from which the exclusive $\eta\prime$ meson production cross section is determined to be $(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b$. Differential cross section distributions have been measured. Their shape is consistent with isotropic $\eta\prime$ meson production.
No description provided.
No description provided.
Only statistial errors.
A test of the QED process e+e- -> gamma gamma (gamma) is reported. The data analysed were collected with the DELPHI detector in 1998 and 1999 at the highest energies achieved at LEP, reaching 202 GeV in the centre-of-mass. The total integrated luminosity amounts to 375.7 pb^{-1}. The differential and total cross-sections for the process e+e- -> gamma gamma were measured, and found to be in agreement with the QED prediction. 95% Confidence Level (C.L.) lower limits on the QED cut-off parameters of Lambda+ > 330 GeV and Lambda- > 320 GeV were derived. A 95% C.L. lower bound on the mass of an excited electron of 311 GeV/c^2 (for lambda_gamma = 1) was obtained. s-channel virtual graviton exchange was searched for, resulting in 95% C.L. lower limits on the string mass scale, M_S: M_S > 713 GeV/c^2 (lambda = 1) and M_S > 691 GeV/c^2 (lambda = -1).
No description provided.
No description provided.
No description provided.
We have performed a hyperon-proton scattering experiment with a scintillating fiber active target. The Σ − p, Λ p and Σ + p scattering have been studied with the same experimental setup. In this paper, we present the differential cross sections of the Σ − p elastic scattering in the momentum region from 400 to 700 MeV /c . This is the first measurement of the Σ − p elastic scattering in the momentum region where the P- and higher waves contributions are important. The present data are in good agreement with the one boson exchange model (Bonn–Jülich model A) and the quark cluster model (FSS of Kyoto–Niigata model).
No description provided.
The total and differential cross sections of the process e+e- -> n gamma with n >= 2 are measured using data collected by the L3 experiment at centre-of-mass energies of \sqrt{s}=183 and 189 GeV. The results are in agreement with the Standard Model expectations. Limits are set on deviations from QED, contact interaction cut-off parameters and masses of excited electrons.
Measured cross section.
Measured differential cross sections corrected for efficiency and additional photons as a function of cos(theta) where theta is the polar angle of the event defined as. cos(theta)=ABS((sin(theta1-theta2)/2)/(sin(theta1+theta2)/2)).
Differential cross sections and beam asymmetries for coherent \pi^\circ photoproduction from ^4He in the \Delta energy-range have been measured with high statistical and systematic precisions using both decay photons for identifying the process.The experiment was performed at the MAinz MIcrotron using the TAPS photon spectrometer and the Glasgow/Mainz tagged photon facility. The differential cross sections are in excellent agreement with predictions based on the DWIA if an appropriate parametrization of the \Delta-nuclear interaction is applied. The beam asymmetries are interpreted in terms of degrees of linear polarization of collimated coherent bremsstrahlung. The expected increase of the degree of linear polarization with decreasing collimation angle is confirmed. Agreement with calculations is obtained on a few-percent level of precision in the maxima of the coherent peaks.
Only statistical errors are presented.
Only statistical errors are presented.
Only statistical errors are presented.
Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .
No description provided.