Experimental data are presented on deuteron production in the target fragmentation region for 250 GeV/c π+ interactions with Al and Au nuclei, and compared with analogous data on proton production. Indications are observed for narrow structures in the (dπ-) effective mass system at ∼2.04 and ∼2.08 GeV.
Number of weighted events as a function of number of forward produced deuterons.
Number of weighted events as a function of number of forward produced deuterons.
Mean deuteron multiplicity.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
None
No description provided.
No description provided.
No description provided.
No description provided.
We present a study of inclusive π0 and ŋ production ine+e− annihilation at
Particle multiplicities in the continuum.
Particle multiplicities in the UPSILON (1S).
Inclusive pi0 spectra in the continuum.
The production of Λ,\(\bar \Lambda\) andKs0 has been studied in 200 GeV/nucleonp+S and S+S collisions in the streamer chamber of the NA35 experiment at the CERN SPS. Significant enhancement of the multiplicities of all observed strange particles relative to negative hadrons was observed in central S+S collisions, as compared top+p andp+S collisions. The latter collisions show no overall (relative) strangeness enhancement overp+p, but the rapidity distributions and hadron multiplicities indicate some secondary cascading production of Λ particles in thep+S andp+Au collisions. The Λ polarization in central S+S collisions was found to be compatible with zero up topT=2 GeV/c.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in P SU collisions.
Tranverse kinetic energy spectra of neutral strange particles in SU SU collisions.
We present measurements of global event shape distributions in the hadronic decays of theZ0. The data sample, corresponding to an integrated luminosity of about 1.3 pb−1, was collected with the OPAL detector at LEP. Most of the experimental distributions we present are unfolded for the finite acceptance and resolution of the OPAL detector. Through comparison with our unfolded data, we tune the parameter values of several Monte Carlo computer programs which simulate perturbative QCD and the hadronization of partons. Jetset version 7.2, Herwig version 3.4 and Ariadne version 3.1 all provide good descriptions of the experimental distributions. They in addition describe lower energy data with the parameter values adjusted at theZ0 energy. A complete second order matrix element Monte Carlo program with a modified perturbation scale is also compared to our 91 GeV data and its parameter values are adjusted. We obtained an unfolded value for the mean charged multiplicity of 21.28±0.04±0.84, where the first error is statistical and the second is systematic.
Corrected Thrust distribution.
Corrected Major distribution.
Corrected Minor distribution.
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
Fully corrected charged particle multiplicity distributions. Errors for n=2 and 4 are systematic only since these were derived using the LUND 6.3 Monte Carlo normalized to the observations at higher n values.
No description provided.