A study of the reactions p Xe → K + K + X , p Xe → K + H(H → Σ − p)X and p Xe → K + K + H(H → Σ − p)X was performed using the 700-litre xenon bubble chamber DIANA, exposed to the 1 GeV/ c antiproton beam of ITEP (Moscow). From a sample of 7.8 · 10 5 antiproton annihilations at low energy in xenon nuclei 4 events were observed for the reaction p Xe | → K + K + X at rest ( P p ≤ 400 MeV /c ) and 8 for the same reaction in flight ( 400 ≤ P p ≤ 900 MeV /c ). The corresponding probabilities turned out to be 3.1 · 10 −5 and 3.4 · 10 −5 , respectively. No H -event was found in the two semi-inclusive reactions p Xe → K + HX and p Xe → K + K + HX . This lead to the upper limits 6 · 10 −6 and 8 · 10 −6 (90% C.L.), respectively. The corresponding upper limit for the fully inclusive reaction p Xe → HX turned out to be 1.2 · 10 −5 (90% C.L.), which is about one order of magnitude lower than the actual value reported in the literature.
No description provided.
A fresh analysis is reported of high statistics Crystal Barrel data on p p → 3π 0 , ηηπ 0 , ηπ 0 π 0 and ηη ′ π 0 at rest. This analysis is made fully consistent with CERN-Munich data on π + π − → π + π − up to a mass of 1900 MeV, with GAMS data on π + π − → π 0 π 0 , and with BNL and ANL data on π + π − → K K , which are fitted simultaneously. There is evidence for an I = 0, J PC = 2 ++ resonance with weak (≤ 7%) coupling to ππ, strong coupling to both ϱϱ and ωω and pole position 1534 - i90 MeV. This resonance agrees qualitatively with GAMS and VES data on ππ → ωω, previously interpreted in terms of a resonance at 1590–1640 MeV. New masses and widths for (A) ƒ 0 (1370) and (B) ƒ 0 (1500) , fitted to all eight data sets, are M A = 1300 ± 15 Mev, Γ A = 230 ± 15 MeV, M B = 1500 ± 8 MeV, Γ B = 132 ± 15 MeV. Branching ratios to ππ and ηη are given, and differ significantly from earlier determinations because of a new procedure.
A fraction of the initial P-state annihilation into F2(1270) cannot be ruled out. Therefore, the ratio magnitudes include the contribution due to this channel. MESON0 denotes A2(1630) state, not present in RPP.
Preliminary results from WA97 measurements on Λ, Ξ and Ω production in lead-lead and proton-lead collisions are presented, along with a comparison of WA97 proton-lead data with previous WA85 proton-tungsten results. The ratio Ω gX seems to be enhanced in lead initiated reactions compared to proton initiated reactions.
No description provided.
No description provided.
PRELIMINARI DATA.
We report measurements of charm particle production asymmetries from the Fermilab photoproduction experiment E687. An asymmetry in the rate of production of charm versus anticharm particles is expected to arise primarily from fragmentation effects. We observe statistically significant asymmetries in the photoproduction of D + , D ∗+ and D 0 mesons and find small (but statistically weak) asymmetries in the production of the D s + meson and the Λ c + baryon. Our inclusive photoproduction asymmetries are compared to predictions from nonperturbative models of charm quark fragmentation.
Production asymmetry. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Antiparticle/particle production ratio. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table. SIG(C=ANTI-CHARM) denotes the reaction with anti-charm production.
Production asymmetry for particles produced in association with a D*(2010)+-. E-gamma = 200 GeV is mean energy. Only reactions for charm particle production are present in the table.
Cross-sections are obtained for coherent interactions of π+ and K+-mesons with Al and Au nuclei at 250 GeV/c, leading to three, five and seven charged mesons. The total coherent cross-section is (4.3 ± 0.5)% of the inelastic cross-section for each of the four meson-nucleus interactions. In 85% of the coherent events, the charged meson production is accompanied by neutral mesons. Effective mass distributions are presented for coherently produced particles, including charged mesons and photons, carrying total measured energy of more than 85% of the initial energy. Charged particle and γ spectra are analysed. No charge asymmetry is observed within the coherently produced cluster.
No description provided.
No description provided.
No description provided.
From a sample of 2.36 million minimum bias events produced in p p collisions at s =630 GeV in the UA1 experiment and from other published data at the CERN S p p S collider we have estimated the relative production of π ± , π 0 , K ± , K S 0 , Λ, Λ , p and p . We obtain a meson over baryon ratio M B = 6.4 ± 1.1 . From the K S 0 π ± ratio we measure the strangeness suppression factor λ = 0.29 ± 0.02 ± 0.01 which, combining with other available data provides a new world average of 0.29 ± 0.015. Both the K S 0 π ± ratio and the strangeness suppression factor λ as a function of s are investigated, and an extrapolation to the LHC energy is performed.
Extrapolation to pt=0.
CONST is strangeness suppression factor, extracted from KS/PI+- ratio (see text).
A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z0 decays in the 1991–1994 DELPHI data. Prompt J/ψ, ψ(2S) and Υ candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upperlimits are set at the 90% confidence level for Br(Z0 → (QQ) X)/Br (Z0 → hadrons) for various strong production mechanisms of J/ψ and Υ these range down to 0.9 × 10−4. The limits are set in the presence of a small excess (∼ 1% statistical probability of a background fluctuation) in the sum of candidates from prompt J/ψ, ψ(2S), Υ(1S),Υ(2S) and Υ(3S) relative to the estimated background.
The analysis of hadrons (from X) provides to distinguish of the various decay modes of Z-boson (see text).
No description provided.
We report on the analysis of Charmonium and Bottomium states produced in p-Si interactions at s =38.7 GeV . The data have been collected with the open geometry spectrometer of the E771 Experiment at the FNAL High Intensity Lab. J ψ , ψ′ and γ total cross sections as well as the ratio B(ψ′ → μμ)σ(ψ′) (B( J ψ → μμ)σ( J ψ )) have been measured. Results are compared with theoretical predictions and with results at other energies.
The total inclusive cross section per nucleon has been evaluated assuming an atomic weight dependence of A**POWER with POWER = 0.920 +- 0.008.
combined UPSI(1S) and UPSI(2S) cross section.
No description provided.
A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.
'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.
A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .
No description provided.
The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').