Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.
No description provided.
No description provided.
No description provided.
Inclusive inelastic scattering spectra from C, Ca, Sn, and Pb were measured for 100-MeV pions at a number of angles. The observed ratios of the π− and π+ total inelastic cross sections for the different targets are explained in terms of a simple model which is based on the assumption that the scattered pion has interacted with only one nucleon. This model also accounts for the ratio between normal and charge-exchange scattering cross sections at 100 MeV.
No description provided.
No description provided.
A systematic study of inclusive pion double charge exchange is reported for nuclei between A=16 and A=208. The doubly differential cross sections for the A(π+,π−) and A(π−,π+) reactions in O16, Ca40, Rh103, and Pb208 were measured at incident energies between 120 and 270 MeV at three to five outgoing pion angles. Pion spectra were measured over the energy range from 10 MeV to the kinematic limit for double charge exchange. Integrating these spectra over outgoing pion energy generated angular distributions, and subsequently integrating these angular distributions generated total reaction cross sections. The shapes of the measured spectra are compared with those determined by the distribution of events in four-body phase space and with those predicted by a model in which the pion undergoes two sequential single charge exchanges on nucleons in a Fermi gas. The cross sections are compared with predictions of cascade calculations in which more than two interactions, including pion absorption and scattering without charge exchange, may occur.
No description provided.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.
Total cross section for the lower Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.
Total cross section for the higher Q**2 data as a function of W. The errors are statistics and systematic added in quadrature.
Lower Q**2 extracted differential cross section at W = 1.500 GeV and cos(theta(eta) = -0.917, -0.750 and -0.583.
Measurements of the proton and deuteron $F_2$ structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range $0.06 < Q^2 < 2.8$ GeV$^2$, and Bjorken $x$ values from 0.009 to 0.45, thus extending the knowledge of $F_2$ to low values of $Q^2$ at low $x$. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for $Q^2<2$ GeV$^2$ at the low and high $x$-values. Down to the lowest value of $Q^2$, the structure function is in good agreement with a parameterization of $F_2$ based on data that have been taken at much higher values of $Q^2$ or much lower values of $x$, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low $x$ remains well described by a logarithmic dependence on $Q^2$ at low $Q^2$.
Proton and Deuteron F2 structure function for an x value of 0.040, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.
Proton and Deuteron F2 structure function for an x value of 0.060, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.
Proton and Deuteron F2 structure function for an x value of 0.080, determined via the Rosenbluth separation method. Error is shown without the contribution from radiative corrections.
The process $ep \to e^{\prime}p^{\prime}\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\gamma^{\ast}p \to p^{\prime}\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\ast}$. It is found that the rapid fall off of the $\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances
Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.9 for the small SOS spectrometer.
Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.7 for the small SOS spectrometer.
Differential cross sections at Q**2=6.564 GeV**2, EPSILON=0.4523, W=1.112 GeV and COS(THETA(*))=-0.5 for the small SOS spectrometer.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A full set of optimized observables is measured in an angular analysis of the decay B$^0$$\to$ K$^*$(892)$^0\mu^+\mu^-$ using a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV, collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. The analysis is performed in six bins of the squared invariant mass of the dimuon system, $q^2$, over the range 1.1 $\lt$$q^2$$\lt$ 16 GeV$^2$. The results are among the most precise experimental measurements of the angular observables for this decay and are compared to a variety of predictions based on the standard model. Some of these predictions exhibit tension with the measurements.
Results for the $F_\mathrm{L}$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_1$ angular observable. The first uncertainties are statistical and the second systematic.
Results for the $P_2$ angular observable. The first uncertainties are statistical and the second systematic.
The H(e,e'pi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.
Separated cross sections at mean Q**2 of 1.60 GeV**2.
Separated cross sections at mean Q**2 of 2.45 GeV**2.
Extracted values of the charged pion form-factor. Errors are the statistical and experimental systematics combined in quadrature.