The longitudinal momentum spectra of mesons produced in the projectile fragmentation region ofK−p interactions at 110 GeV/c, measured in a bubble chamber experiment, are compared to two fragmentation models related to hadron production by incident leptons. The models give a qualitative description of the data. However, it is found that the mesons having a valence quark in common with the projectile tend to have higher momenta than predicted.
No description provided.
Total and differential cross sections ofK*−(890),K*−(890),\(\bar K^{ * 0} \)(890),K*0(890),\(\bar K^{ * 0} \)(1430) andϱ0(770) produced inK−p interactions at 110 GeV/c are presented. The cross sections of the neutral resonances show a smooth increase with energy from 10 to 110 GeV/c incident momentum. For theK*+(890) and theK*0(890), i.e. the resonances with strangenessS=+1, this rise is quite significant: their cross sections practically double between 32 GeV/c and 110 GeV/c incidentK− momentum. About 50% of the neutral kaons and 30% of charged pions produced inK−p interactions at our energy are found to be decay products of the resonances considered.
No description provided.
No description provided.
No description provided.
A determination of branching ratios for D meson decays into all charged particle final states is reported. The values obtained: (D ± → K ∓ π ± π ± /all D ± ) = (14 ± 6)% and ( D 0 /D 0 → K ± π ∓ π + π − /all D 0 /D 0 ) = (10 ± 4)%, are higher than those currently accepted. This result, if confirmed, implies a corresponding reduction in the accepted values for some total cross section measurements. Revised inclusive cross sections for D meson production in the forward hemisphere in π − p and pp interactions at 360 GeV/ c , are presented.
No description provided.
Results on inclusive production of γ,K n , Λ 0 and Λ 0 in K − p interactions at 110 GeV/ c are presented. Total cross sections, and differential cross sections in terms of Feynman x , rapidity and p T 2 are given. It is found that about 40% of K n 's are produced together with a strange particle pair, and that 80% of Λ 0 's are produced together with a K K pair. These Λ 0, 's are produced predominantly in the backward direction. Fits to the form (1−| x |) n to the x F distributions of K n and Λ 0 in the fragmentation regions are found to be in general agreement with quark counting rule predictions.
No description provided.
No description provided.
No description provided.
The charged multiplicity distribution is presented for K − p interactions produced in the hydrogen bubble chamber, BEBC, using an r.f. separated, tagged K − beam of 110 GeV/ c momentum. A comparison with K + p, πp and pp data at lower energies shows that the main features of the multiplicity distributions depend on energy and charge of the incident particles, but not on their strangeness. At high energies, only the energy is important.
No description provided.
No description provided.
No description provided.
Charm D-meson production in 360 GeV π − p interactions has been studied using the high-resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer. The data show evidence for leading quark effects both in the number of D-meson types and in the Feynman x distributions. The production cross section is of the form d 2 δ d x d p T 2 ∞(1-x) n exp (-ap T 2 ) with n = 2.8±0.8 and a = 1.1±0.3 (GeV/ c ) −2 . The x distribution is, however, compatible with the presence of both central ( n = 6) and leading (n = 1) D / D production. The fraction of D-messons in the leading component is estimated to be ≈30%. The rapidity gap between members of reconstructed charm pairs is small compared to the available rapidity range. The inclusive cross section for single D-messons in the forward direction is: δ(D/ D )=(40 8 +15 )μ b ( for x>0) .
No description provided.
Charm D-meson production in 360 GeV pp interactions has been studied using the high-resolution hydrogen bubble chamber LEBC and the European Hybrid Spectrometer. D-mesons are produced with a differential cross section of the form d 2 σ d x d p T 2 δ(1-x) n exp (-ap T 2 ) , with n =1.8± 0.8 and a =1.1±0.03 GeV/ c −2 for the Feynman x and Transverse momentum p T behaviour. The inclusive partle prticle crossssection for D and D̄;measured to be: σ(D/ D ̄ ) = (56 −12 25 μ b (for all x ). The Λ c D ̄ cross section can be estimated to be ≈20 μ b. No strong correlation is observed between DD̄ pairs. The results are compared with results from a study of D-meaon production in 360 GeV/ c π − p interactions also using LEBC-EHS.
No description provided.
Multiplicity distributions and correlations between charged particles in the forward and back-ward c.m. hemispheres are studied inK−p interactions at 110 GeV/c and compared with other data on mesonnucleon scattering. The interpretation in terms of a simple quark-parton picture assuming that the forward multiplicity is dominated by quark fragmentation and the backward multiplicity by diquark fragmentation is supported by the experimental fact that the forward and the backward mean multiplicities are approximately equal to half of thee+e− andpp multiplicities, respectively. The 110 GeV/cK−p data show significant correlations between the numbers of slow forward and slow backward particles, whereas the multiplicities of fast forward and fast backward particles are independent.
CHARGED MULTIPLICITY PER INELASTIC EVENT.
NONDIFFRACTIVE SAMPLE ( -0.85 < XL < 0.85 ). CHARGED MULTIPLICITY PER INELASTIC EVENT.
Results are presented on inclusive production of ∑+(1385) and ∑−(1385) inK−p interactions at 110 GeV/c. The inclusive and topological cross sections have been estimated and compared with published results at lower energies. The inclusive cross section of ∑+(1385) seems to decrease with c.m. energy, while that of the ∑−(1385) is nearly constant. The mean charged multiplicity associate to Σ(1385) increases with c.m. energy. The ∑+(1385) is produced both in the target fragmentation region and in the central region where ∑−(1385) is predominantly produced in the central region. Approximately 16% of the Λ's stem from the decay of ∑±(1385) and the kinematic distributions of these Λ's are not very different from the inclusive Λ's.
No description provided.
Results on inclusive ϕ production inK−p interactions at 110 GeV/c are presented. The production cross section is found to be larger than in πp andpp interactions at similar energies, suggesting OZI allowed\(s\bar s\) fusion to be the dominant mechanism in ϕ production. Thex distributions of ϕ and\(\bar K^{*0} \) are found to be similar to each other over the entirex range suggesting an overall strangeness suppression factor of 0.20±0.04 in the sea to be the dominant source of the difference in the cross section for ϕ and\(\bar K^{*0} \). There is no evidence of a narrowφπ− state around 2.1 GeV/c2 as suggested byK+ experiments, but there is some excess of events in the region 1.94−1.98 GeV/c2 consistent with theF-meson mass as observed ine+e− experiments.
Errors contain both statistics and systematics.
F(XL) is invariant cross section.