Two-body strange-particle final states in pi- p interactions at 4.5 and 6 gev/c

Crennell, D.J. ; Gordon, H.A. ; Lai, Kwan-Wu ; et al.
Phys.Rev.D 6 (1972) 1220-1254, 1972.
Inspire Record 73936 DOI 10.17182/hepdata.3601

Results on the following π−p reactions involving a hyperon are studied at 4.5 and 6.0 GeV/c from a high-statistics bubble-chamber experiment. (1) π−p→(Λ, Σ0)K0: Differential cross sections and hyperon polarizations are presented. Comparison with the line-reversed reactions K¯N→(Λ, Σ0)π indicates the failure of the predictions of K*(890) and K*(1420) exchange degeneracy. Effective trajectories for these two reactions are compared. Shrinkage is observed in K¯N→Λπ and not in π−p→ΛK0. (2) π−p→(Λ, Σ0)K*(890)0: Differential cross sections, hyperon polarizations, and K*(890)0 density-matrix elements are determined. ΛK*(890)0 decay correlations are found to impose strong constraints on the scattering amplitudes. The data indicate that both natural- and unnatural-parity exchanges contribute large, but opposite, Λ polarizations. This behavior cannot be explained by a simple exchange model utilizing K and the exchange-degenerate K*(890) and K*(1420) only. Additional trajectories or absorption effects are required to obtain the observed Λ-polarization effects. Comparison of ΛK*(890)0 and Σ0K*(890)0 indicates the greater importance of unnatural-parity exchange in the former reaction. We observe no evidence for deviations from isospin predictions in ΛK*(890)0 production where K*(890)0→K+π− and KS0π0. (3) π−p→ΛK*(1420)0 and ΛK*(1300)0: K*(1420)0 density-matrix elements satisfying positivity constraints are determined allowing for s-wave interference effects. Evidence of the existence of a narrow K*(1300)0→Kππ with a dominant K+ρ− decay mode is observed in the 4.5- and 6-GeV/c data. (4) Σ(1385), Λ(1405), Λ(1520) production: Differential cross sections for the quasi-two-body reactions π−p→Y0K0, where Y0 is Λ(1405), Λ(1520), or Σ(1385)0, are presented and found to have a very similar flat slope in the forward direction. Data for forward K+ scattering in the reaction π−p→Σ(1385)−K+ are presented and discussed. It is argued that this forward peak cannot be explained by kinematic reflection or an s-channel effect and therefore must be due to either two-particle exchange or a single exotic exchange in the t channel.

1 data table match query

No description provided.


Search for a third-generation leptoquark coupled to a $\tau$ lepton and a b quark through single, pair, and nonresonant production in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 05 (2024) 311, 2024.
Inspire Record 2688366 DOI 10.17182/hepdata.141707

A search is presented for a third-generation leptoquark (LQ) coupled exclusively to a $\tau$ lepton and a b quark. The search is based on proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with $\tau$ leptons and a varying number of jets originating from b quarks are considered, targeting the single and pair production of LQs, as well as nonresonant $t$-channel LQ exchange. An excess is observed in the data with respect to the background expectation in the combined analysis of all search regions. For a benchmark LQ mass of 2 TeV and an LQ-b-$\tau$ coupling strength of 2.5, the excess reaches a local significance of up to 2.8 standard deviations. Upper limits at the 95% confidence level are placed on the LQ production cross section in the LQ mass range 0.5-2.3 TeV, and up to 3 TeV for $t$-channel LQ exchange. Leptoquarks are excluded below masses of 1.22-1.88 TeV for different LQ models and varying coupling strengths up to 2.5. The study of nonresonant $\tau\tau$ production through $t$-channel LQ exchange allows lower limits on the LQ mass of up to 2.3 TeV to be obtained.

1 data table match query

Postfit distributions of $S_\mathrm{T}^\mathrm{MET}$ in the $\mathrm{e}\mu$ channel of the 0b category for the combined 2016-2018 data set after a simultaneous fit of the background and vector LQ signal to the data. The number of events in each bin are divided by the respective bin width. The last bin includes the overflow.


Search for Supersymmetry in pp Collisions at sqrt(s) = 7 TeV in Events with Two Photons and Missing Transverse Energy

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.Lett. 106 (2011) 211802, 2011.
Inspire Record 891482 DOI 10.17182/hepdata.57149

A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

1 data table match query

95 PCT CL upper limits to cross section and the GGM acceptance as a function of Gluino mass for Squark mass 400 GeV and Neutralino mass 150 GeV.


Search for pair production of vector-like quarks in leptonic final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 020, 2023.
Inspire Record 2152227 DOI 10.17182/hepdata.129875

A search is presented for vector-like T and B quark-antiquark pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV. Data were collected by the CMS experiment at the CERN LHC in 2016-2018, with an integrated luminosity of 138 fb$^{-1}$. Events are separated into single-lepton, same-sign charge dilepton, and multilepton channels. In the analysis of the single-lepton channel a multilayer neural network and jet identification techniques are employed to select signal events, while the same-sign dilepton and multilepton channels rely on the high-energy signature of the signal to distinguish it from standard model backgrounds. The data are consistent with standard model background predictions, and the production of vector-like quark pairs is excluded at 95% confidence level for T quark masses up to 1.54 TeV and B quark masses up to 1.56 TeV, depending on the branching fractions assumed, with maximal sensitivity to decay modes that include multiple top quarks. The limits obtained in this search are the strongest limits to date for $\mathrm{T\overline{T}}$ production, excluding masses below 1.48 TeV for all decays to third generation quarks, and are the strongest limits to date for $\mathrm{B\overline{B}}$ production with B quark decays to tW.

1 data table match query

Distribution of the MLP T quark score in the SR for the $T\overline{T}$ search. The observed data, predicted $T\overline{T}$ signal with mass of 1.2 (1.5) TeV in the singlet scenario, and the background are all shown. Statistical and systematic uncertainties in the background prediction before performing the fit to data are also shown. The signal predictions of 1.2 TeV and 1.5 TeV signals have been scaled by factors of x10 and x20, respectively, for visibility.


Version 3
Search for resonant production of strongly coupled dark matter in proton-proton collisions at 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 06 (2022) 156, 2022.
Inspire Record 1994864 DOI 10.17182/hepdata.115426

The first collider search for dark matter arising from a strongly coupled hidden sector is presented and uses a data sample corresponding to 138 fb$^{-1}$, collected with the CMS detector at the CERN LHC, at $\sqrt{s} =$ 13 TeV. The hidden sector is hypothesized to couple to the standard model (SM) via a heavy leptophobic Z' mediator produced as a resonance in proton-proton collisions. The mediator decay results in two "semivisible" jets, containing both visible matter and invisible dark matter. The final state therefore includes moderate missing energy aligned with one of the jets, a signature ignored by most dark matter searches. No structure in the dijet transverse mass spectra compatible with the signal is observed. Assuming the Z' has a universal coupling of 0.25 to the SM quarks, an inclusive search, relevant to any model that exhibits this kinematic behavior, excludes mediator masses of 1.5-4.0 TeV at 95% confidence level, depending on the other signal model parameters. To enhance the sensitivity of the search for this particular class of hidden sector models, a boosted decision tree (BDT) is trained using jet substructure variables to distinguish between semivisible jets and SM jets from background processes. When the BDT is employed to identify each jet in the dijet system as semivisible, the mediator mass exclusion increases to 5.1 TeV, for wider ranges of the other signal model parameters. These limits exclude a wide range of strongly coupled hidden sector models for the first time.

6 data tables match query

The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.

The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.

The normalized distributions of the BDT input variable $m_{\text{SD}}$ for the two highest $p_{\text{T}}$ jets from the simulated SM backgrounds and several signal models. Each sample's jet $p_{\text{T}}$ distribution is weighted to match a reference distribution (see text). The last bin of each histogram includes the overflow events.

More…

Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

1 data table match query

The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.


Version 3
Search for higgsinos decaying to two Higgs bosons and missing transverse momentum in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2022) 014, 2022.
Inspire Record 2009652 DOI 10.17182/hepdata.114414

Results are presented from a search for physics beyond the standard model in proton-proton collisions at $\sqrt{s} =$ 13 TeV in channels with two Higgs bosons, each decaying via the process H $\to$$\mathrm{b\bar{b}}$, and large missing transverse momentum. The search uses a data sample corresponding to an integrated luminosity of 137 fb$^{-1}$ collected by the CMS experiment at the CERN LHC. The search is motivated by models of supersymmetry that predict the production of neutralinos, the neutral partners of the electroweak gauge and Higgs bosons. The observed event yields in the signal regions are found to be consistent with the standard model background expectations. The results are interpreted using simplified models of supersymmetry. For the electroweak production of nearly mass-degenerate higgsinos, each of whose decay chains yields a neutralino ($\tilde{\chi}^0_1$) that in turn decays to a massless goldstino and a Higgs boson, $\tilde{\chi}^0_1$ masses in the range 175 to 1025 GeV are excluded at 95% confidence level. For the strong production of gluino pairs decaying via a slightly lighter $\tilde{\chi}^0_2$ to H and a light $\tilde{\chi}^0_1$, gluino masses below 2330 GeV are excluded.

5 data tables match query

Pre-fit background covariance matrix $\sigma_{xy}$ for the 22 analysis bins, ordered as in Fig. 10.

Pre-fit background correlation matrix $\rho_{xy}$ for the 22 analysis bins, ordered as in Fig. 10.

Efficiency vs $m(\widetilde{\chi}^0_1)$ for SMS model TChiHH-G. The denominator includes all 22 signal regions, and assumes $\mathcal{B}(\mathrm{H}$-->$\mathrm{b}\overline{\mathrm{b}})=100\%$.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

1 data table match query

Jet mass difference distribution.


Neutrino and anti-neutrinos Charged Current Inclusive Scattering in Iron in the Energy Range 20-GeV < Neutrino Energy < 300-GeV

Abramowicz, H. ; de Groot, J.G.H. ; Knobloch, J. ; et al.
Z.Phys.C 17 (1983) 283, 1983.
Inspire Record 182549 DOI 10.17182/hepdata.2213

Inclusive charged-current interactions of high-energy neutrinos and antineutrinos have been studied with high statistics in a counter experiment at the CERN Super Proton Synchrotron. The energy dependence of the total cross-sections, the longitudinal structure function, and the nucleon structure functionsF2,xF3, and\(\bar q^{\bar v} \) are determined from these data. The analysis of theQ2-dependence of the structure functions is used to test quantum chromodynamics, to determine the scale parameter Λ and the gluon distribution in the nucleon.

1 data table match query

STUCTURE FUNCTIONS ARE EVALUATED ASSUMING R=SIG(L)/SIG(T)=0.1 AND M(W) IS INFINITE. NO CORRECTION FOR FERMI MOTION APPLIED. ERRORS ARE STATISTICAL AND SYSTEMATIC POINT-TO-POINT ERRORS. IN ADDITION OVER-ALL SCALE ERROR OF 6 PCT. FOR F2 , 8 PCT. FOR XF3.


REACTION PI- P ---> PI- PI+ PI- P AT 8-GEV/C

Kitagaki, T. ; Tanaka, S. ; Yuta, H. ; et al.
Phys.Rev.D 26 (1982) 1554-1571, 1982.
Inspire Record 182973 DOI 10.17182/hepdata.23971

Results from a high-statistics experiment involving an exposure of the SLAC 82-in. hydrogen bubble chamber to a beam of 8-GeV/c π− yielding a final state of π−π+π−p are presented. Copious production of ρ, Δ++, and f is found. Considerable quasi-two-body production in which one particle decays to one of the above resonances is also observed. Some double-resonance production involving baryon and meson resonances is also seen. The production properties of ρ, Δ++, and f mesons are well described by a double-Regge model.

1 data table match query

No description provided.