The process e + e − →e + e − μ + μ − has been studied in single-tag and double-tag configurations using the TOPAZ detector at TRISTAN. The data correspond to the integrated luminosity of 45.3pb − at center-of-mass energies ranging from 52 to 61.4 GeV. The observed events in both configurations have shown a good agreement with QED predictions in order α 4 . Although the AMY group reported an excess of e + e − →e + e − μ + μ − events in double-tag mode at low muon invariant mass region less than 1.0 GeV/c 2 , we did not observed such excess in our data.
No description provided.
An experimental study of b-quark jets using high- p T electrons was carried out at √ s =58 GeV with the TOPAZ detector at the e + e − collider TRISTAN at KEK. The forward-backward charge asymmetry of the b-quark was obtained to be A b b ̄ =−0.55±0.27( stat. )±0.07( syst. ) , consistent with the standard model prediction. Also, such jet properties of the b-quark as the average charged multiplicity and the rapidity of charged particles were analyzed. In order to purify the b-quark event samples in this analysis, only events with backward-going electrons or forward-going positrons were used. The energy dependence of these jet properties was studied by making comparisons with the results of the DELCO experiment at the PEP collider (√ s =29 GeV) at SLAC.
No description provided.
No description provided.
Mean values of jet properties for b-jet sample.
The proton elastic electric and magnetic form factors, GEp(Q2) and GMp(Q2), have been separately measured in the range Q2=1.75 to 8.83 (GeV/c)2, more than doubling the Q2 range of previous data. Scaled by the dipole fit, GD(Q2), the results for GMp(Q2)/μpGD(Q2) decrease smoothly from 1.05 to 0.91, while GEp(Q2)/GD(Q2) is consistent with unity. Comparisons are made to QCD sum rule, diquark, constitutent quark, and vector meson dominance models, none of which agree with all of the new data. The ratio Q2F2/F1 approaches a constant value for Q2>3 (GeV/c)2.
Magnetic form factors.
Electric form factors.
We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.
None
Three different methods are used for extraction Alphas value (see text for details). Systematical errors with C=HADR and C=THEOR are due to hadronization correction and theoretical uncertainties.
None
NC, CF, and TF are the color factors for SU(N) group. For SU(3) they are equal to: NC = 3, CF = 4/3, and TF = 1/2.
We observe evidence for the production of b-flavoured baryons in decays of the Z 0 boson with the OPAL detector at LEP. We find 68 Λl − , Λ l + candidates in 458 583 hadronic Z 0 decays. We interpret this as a signal of 55 ± 9 +0.3 −3.1 events from the semi-leptonic decays of b baryons. Assuming weakly decaying b baryons produced in Z 0 decays are mostly Λ b particles, we measure the product branching ratio (Γ b b /Γ had ) f ( b →Λ b ) B (Λ b →Λl − v X ) , averaged over the electron and muon channels, to be (6.2±1.0±1.5)×10 −4 .
FD is considered as a quark fragmentation fraction. Charge conjugated state is understood.
The rate of neutrino- and antineutrino-induced prompt same-sign dimuon production in steel was measured using a sample of μ−μ− events and 25 μ+μ+ events withPμ>9 GeV/c, produced in 1.5 millionvμ and 0.3 million\(\overline {v_\mu}\) induced charged-current events with energies between 30 GeV and 600 GeV. The data were obtained with the Chicago-Columbia-Fermilab-Rochester (CCFR) neutrino detector in the Fermilab Tevatron Quadrupole Triplet Neutrino Beam during experiments E 744 and E 770. After background subtraction, the prompt rate of same-sign dimuon production is (0.53±0.24)×10−4 pervμ charged-current event and (0.52±0.33)×10−4 per\(\overline {v_\mu}\) charged-current event. The kinematic distributions of the same-sign dimuon events after background subtraction are consistent with those of the non-prompt background due to meson decays in the hadron shower of a charged-current event. Calculations ofc\(\bar c\) gluon bremsstrahlung, based on improved measurements of the charm mass parameter and nucleon structure functions by the CCFR collaboration, yield a prompt rate of (0.09±0.39)×10−4 pervμ charged-current event. In this case,c\(\bar c\) gluon bremsstrahlung is probably not an observable source of prompt same-sign dimuons.
Rate of dimuon production per charged current event.
Rate of dimuon production per charged current event.
Backward emitted protons with momentump>0.3 GeV/c in interactions of neutrino in the energy range 10–200 GeV with photoemulsion nuclei were investigated. Energy spectrum slope parameter of backward protons was measured to beT0=48.9±7.9 MeV. TheA-dependence power index of relative mean yield of backward protons was found to bea=0.68±0.12. A drop in the mean yield of backward protons at the four momentum squared over ∼15 (GeV/c)2 (the neutrino energy over ∼50 GeV) was observed.
NUCLEUS IS AVERAGE NUCLEI OF NUCLEAR EMULSION, <A> ABOUT 80.
NUCLEUS IS AVERAGE NUCLEI OF NUCLEAR EMULSION, <A> ABOUT 80.
NUCLEUS IS AVERAGE NUCLEI OF NUCLEAR EMULSION, <A> ABOUT 80.
Multiplicity, inclusive, correlation and collective characteristics of multiparticle production processes inK+ Al,K+ Au, π+ Al and π+ Au interactions at 250 GeV/c are studied with the European Hybrid Spectrometer, providing high statistics and almost 4 π acceptance for final state charged particles. It is shown that the proton energy spectrum practically does not depend on the target atomic weight, but the proton angular distributions reveal a strongA-dependence. In a model independent way, the average number of intranuclear collisions is extracted, and it is shown that their dominant part (60% for Al and 80% for Au) is caused by interactions of the non-leading particles produced in the target fragmentation. The multiplication ratio of the produced particles for the Au nucleus changes fromR≃40 at the smallest rapidities in the target fragmentation region, down toR=0.37±0.06 at the largest rapidities in the beam fragmentation region. It is found that the average total longitudinal momentum of the charged products of the beam fragmentation depends weakly on the number of leading hadron (cluster) intranuclear collisions which are characterized by a low inelasticity coefficient 〈k〉=0.17±0.03.
No description provided.
No description provided.