Charged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via $H^{\pm} \to \tau^{\pm}\nu_{\tau}$, are searched for in 140 $\text{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with the $H^{\pm}$ decays hadronically or semi-leptonically, the search targets $\tau$+jets or $\tau$+lepton final states, in both cases with a $\tau$-lepton decaying into a neutrino and hadrons. No significant excess over the Standard Model background expectation is observed. For the mass range of $80 \leq m_{H^{\pm}} \leq 3000$ GeV, upper limits at 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction $\mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$ in the range 4.5 pb-0.4 fb. In the mass range 80-160 GeV, assuming the Standard Model cross-section for $t\bar{t}$ production, this corresponds to upper limits between 0.27% and 0.02% on $\mathrm{\cal{B}}(t\to bH^{\pm}) \times \mathrm{\cal{B}}(H^{\pm} \to \tau^{\pm}\nu_{\tau})$.
Observed and expected 95 % CL exclusion limits on $\sigma(pp\to tbH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.
Observed and expected 95 % CL exclusion limits on $\mathrm{\cal{B}}(t\to bH^+)\times \mathrm{\cal{B}}(H^+ \to \tau \nu)$ as a function of $m_{H^{\pm}}$, from a combined fit in the $\tau$+jets and $\tau$+lepton channels. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.
Observed and expected 95 % CL exclusion limits on $\tan\beta$ as a function of $m_{H^{\pm}}$, shown in the context of the hMSSM scenario, for $m_{H^{\pm}}>150$ GeV and $(1 \leq \tan\beta \leq 60)$. The surrounding shaded bands correspond to the 1$\sigma$ and 2$\sigma$ confidence intervals around the expected limit.