We report results of a study of four-lepton final states produced in e + e − collisions at center-of-mass energies from 50 to 61.4 GeV using the AMY detector at the TRISTAN collider. For the cases where two or three charged tracks are produced at large angles relative to the beam direction, the cross sections agree with QED. However, we observe an excess of e + e − → e + e − μ + μ − events with four tracks at wide angles and with dimuon mass less than 1.0 GeV / c 2 .
No description provided.
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
The ratio R of the total cross section for e+e− annihilation into hadrons to the lowest-order QED cross section for e+e−→μ+μ− has been measured for center-of-mass energies ranging from 50 to 61.4 GeV. If we allow for an overall shift of —4.9%, about 1.5 times our estimated normalization error, the results are consistent with the standard-model predictions.
The inclusive cross section for the production of charmed D<sup loc="post">∗±</sup> mesons in two-photon processes is measured with the AMY detector at the TRISTAN e<sup loc="post">+</sup>e<sup loc="post">−</sup> collider. D<sup loc="post">∗±</sup> mesons are identified from the distribution of charged-particle transverse momenta relative to the jet axis. A data sample corresponding to an integrated luminosity of 176 pb<sup loc="post">−1</sup> at a center-of-mass energy of 58 GeV is used to determine a cross section σ(e<sup loc="post">+</sup>e<sup loc="post">−</sup> → e<sup loc="post">+</sup>e<sup loc="post">−</sup>D<sup loc="post">∗±</sup>X) = 270 ± 49(stat) ± 38(syst) pb. The results are compared with theoretical expectations based on the Vector Meson Dominance, direct quark-parton model, and resolved photon processes.
No description provided.
Reduced acceptance region to compare with the TOPAZ results.
Measurements of open charm production in photon-photon collisions made with the AMY detector at TRISTAN are reported. Charmed hadrons were identified by detecting the high momentum muons or electrons from their semileptonic decays. The data sample corresponds to an integrated luminosity of 275 pb −1 at an average center of mass energy of 58 GeV. Results are presented in the form of cross sections of inclusive leptons from charm for both muons and electrons. The measured cross section is 1.8 standard deviations higher than theoretical predictions based on the direct and photon-gluon fusion process, where the mass of charm quark is assumed to be 1.6 GeV.
.
.
.
Using 123 multihadronic inclusive muon-production e+e− annihilation events at an average c.m. energy of 55.2 GeV, we extracted the forward-backward charge asymmetry of the e+e−→bb¯ process and the R ratio for bb¯ production. We used an analysis method in which the behavior of the c quark and lighter quarks is assumed, with only that of the b quark left indeterminate. The results, Ab=-0.72±0.28(stat)±0.13(syst) and Rb=0.57±0.16±0.10, are consistent with the standard model.
Asymmetry in BOTTOM quark production.
Ratio of BOTTOM quark production to total hadron cross section (R value).
We present the charged-particle multiplicity distributions for e+e− annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 30 pb−1 obtained with the AMY detector at the KEK storage ring TRISTAN. The charged-particle multiplicity distributions deviate significantly from the modified Poisson and pair Poisson distributions, but follow Koba-Nielsen-Olesen scaling and are well reproduced by the LUND parton-shower model.
We present cross section measurements for inclusive jet production in almost-real photon-photon interactions at TRISTAN using the AMY detector. The results are compared with leading-order QCD calculations for different parameterizations of the parton density in the photon.
No description provided.
No description provided.
No description provided.
None
We present the general properties of multihadron final states produced by e+e− annihilation at center-of-mass energies from 52 to 57 GeV in the AMY detector at the KEK collider TRISTAN. Global shape, inclusive charged-particle, and particle-flow distributions are presented. Our measurements are compared with QCD+fragmentation models that use either leading-logarithmic parton-shower evolution or QCD matrix elements at the parton level, and either string or cluster fragmentation for hadronization.
Jet scaled mass difference.