Showing 10 of 24 results
A search for cascade decays of charged sleptons and sneutrinos using final states characterized by three leptons (electrons or muons) and missing transverse momentum is presented. The analysis is based on a dataset with 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of $\sqrt{s}$=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. This paper focuses on a supersymmetric scenario that is motivated by the muon anomalous magnetic moment observation, dark mattter relic density abundance, and electroweak naturalness. A mass spectrum involving light higgsinos and heavier sleptons with a bino at intermediate mass is targeted. No significant deviation from the Standard Model expectation is observed. This search enables to place stringent constraints on this model, excluding at the 95% confidence level charged slepton and sneutrino masses up to 450 GeV when assuming a lightest neutralino mass of 100 GeV and mass-degenerate selectrons, smuons and sneutrinos.
Distribution of $m_{3\ell}$ in SROS-on-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $m_{3\ell}$ in SROS-on-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-on-b-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $m_{\text{T}}^{\text{min}}$ in SROS-on-b-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SRSS-$2\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. The hatched band includes all statistical and systematic uncertainties.
Observed ($N_{\text{obs}}$) and expected ($N_{\text{exp}}$) yields after the background-only fit for the flavor-merged inclusive SRs. The third and fourth columns list the 95\% CL upper limits on the visible cross-section ($\sigma_{\text{vis}}^{95}$) and on the number of signal events ($S_\text{obs}^{95}$). The fifth column ($S_\text{exp}^{95}$) shows the 95\% CL upper limit on the number of signal events, given the expected number of background events and its $\pm 1\sigma$ variations. The last two columns indicate the CL$_{\text{b}}$ value, i.e. the confidence level observed for the background-only hypothesis, and the discovery $p$-value ($p(s = 0)$) with its associated statistical significance $Z$. If the observed yield is below the expected yield, the $p$-value is capped at 0.5.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{e}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Observed and expected exclusion limits on the SBH model where only $\tilde{\mu}_{\text{L}}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100~GeV.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SROS-off-b-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. Ratio values outside the graph range are indicated by brown arrows. The hatched band includes all statistical and systematic uncertainties.
Distribution of $m_{\text{T}}^{\text{min}}$ in SROS-off-b-$e\mu\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. Ratio values outside the graph range are indicated by brown arrows. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SRSS-$eee$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. Ratio values outside the graph range are indicated by brown arrows. The hatched band includes all statistical and systematic uncertainties.
Distribution of $E_{\text{T}}^{\text{miss}}$ in SRSS-$ee\mu$. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by a black arrow. The last bin includes the overflow. The `Others' category contains the production of Higgs boson, 3-top, 4-top, and single-top processes. Distributions for SBH signals are overlaid. The bottom panels show the ratio of the observed data to the predicted total background yields. Ratio values outside the graph range are indicated by brown arrows. The hatched band includes all statistical and systematic uncertainties.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ is considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $m(\tilde{\ell}_{\text{L}}^{\pm})$ vs $m(\tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 150 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
Observed and expected exclusion limits on the SBH model where mass-degenerate $\tilde{e}_{\text{L}}$, $\tilde{\mu}_{\text{L}}$ and $\tilde{\nu}$ are considered. The expected 95% CL exclusion limit is shown as a dashed black line, with the yellow band indicating $\pm1\sigma_{\text{exp}}$ including all uncertainties except for the signal cross-section uncertainty. The observed 95% CL exclusion limit is shown as a red solid line, with the dotted red lines indicating $\pm1\sigma_{\text{theory}}$ due to the signal cross-section uncertainty. The limits are shown projected onto the $\Delta m(\tilde{\chi}^0_3, \tilde{\chi}^0_1)$ vs $\Delta m(\tilde{\ell}_{\text{L}}, \tilde{\chi}^0_3)$ plane, with $m(\tilde{\chi}^0_1)$ assumed to be 100 GeV.
The expected upper limits on the cross-section for each signal point. The gray numbers represent the values. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid. An asymptotic approximation is employed in the CL$_{\text{s}}$ calculation instead of the full calculation using pseudo-experiments.
The observed upper limits on the cross-section for each signal point. The gray numbers represent the values. The expected (dashed) and observed (solid) 95% CL exclusion limits are overlaid. An asymptotic approximation is employed in the CL$_{\text{s}}$ calculation instead of the full calculation using pseudo-experiments.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Acceptance for signals with $m(\tilde{\chi}^0_1)=100$ GeV in flavored-merged SRs. The acceptance is given by the ratio of weighted selected events in the SR to the weighted total number of generated events. The selection is based on generator-level particle information.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Efficiencies for signals with $m(\tilde{\chi}^0_1)=100$ GeV in the $m_{3\ell}$ merged SRSFOS and SRSS. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. Efficiencies below 0.002% are rounded to 0. The efficiency values are affected by statistical fluctuations due to the limited number of events.
Summary of the number of events passing each selection for the $m(\tilde{\ell}_{\text{L}}^{\pm},\tilde{\chi}^0_3,\tilde{\chi}^0_1)=(300, 200, 100)$, $(550, 300, 100)$, $(450, 180, 100)$ GeV signal points, including all production processes. After the initial selections, the table is split into row blocks per inclusive region, and then further for each SR channel. Flavor-binned SRs are shown for SROS-on-b for reference. The generator level selections require to have two or more leptons.
Summary of the number of events passing each selection for the $m(\tilde{\ell}_{\text{L}}^{\pm},\tilde{\chi}^0_3,\tilde{\chi}^0_1)=(300, 200, 100)$, $(550, 300, 100)$, $(450, 180, 100)$ GeV signal points, including all production processes. After the initial selections, the table is split into row blocks per inclusive region, and then further for each SR channel. Flavor-binned SRs are shown for SROS-off-b for reference. The generator level selections require to have two or more leptons.
Summary of the number of events passing each selection for the $m(\tilde{\ell}_{\text{L}}^{\pm},\tilde{\chi}^0_3,\tilde{\chi}^0_1)=(300, 200, 100)$, $(550, 300, 100)$, $(450, 180, 100)$ GeV signal points, including all production processes. After the initial selections, the table is split into row blocks per inclusive region, and then further for each SR channel. Flavor-binned SRs are shown. The generator level selections require to have two or more leptons.
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of 140 $fb^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetime.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The contour for the excluded mass--lifetime region for stau pair production obtained with the di-track search. All masses and lifetimes shown that are below the curve and above 200 GeV are excluded by the observed data (while the expected exclusion is between the upper curve down to 210 GeV for lifetimes above 3000 ns). The sensitivity extends indefinitely to longer lifetimes.
The distribution of data and predicted background in the di-track Exclusion-SR. The observed data events are indicated as magenta circles if they are inside the mass-compatibility angle (shown as grey lines) and as orange diamonds if they are outside, while the blue area is the mass distribution of the expected background. The last bins include overflow events
The distribution of data and predicted background in the di-track Exclusion-SR. The observed data events are indicated as magenta circles if they are inside the mass-compatibility angle (shown as grey lines) and as orange diamonds if they are outside, while the blue area is the mass distribution of the expected background. The last bins include overflow events
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 3 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 10 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with 30 ns lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus mass for staus with a detector-stable lifetime.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 200 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 300 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 400 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 500 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The 95\% CL exclusion limits from the di-track search on cross-section versus lifetime for 600 GeV staus.
The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.
Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM1.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM2.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-HM3.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp1.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp2.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp3.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp-1c.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos when only considering SR-Comp-1c.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 1 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to top or charm quarks and 200 GeV neutralinos for different branching fraction assumptions.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Expected exclusion limit at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Observed exclusion limit at 95% CL for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Expected exclusion limit $(+1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Expected exclusion limit at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Observed exclusion limit $(+1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Observed exclusion limit $(-1\sigma)$ at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Observed exclusion limit at 95% CL for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Observed upper limit on the cross-section at 95% CL for pair production of top squarks decaying into charm quarks and neutralinos for the fit with the best expected CL$_\mathrm{S}$.
Observed upper limit on the cross-section for pair production of up-type scalar LQs coupled to first generation leptons and second generation quarks.
Observed upper limit on the cross-section for pair production of up-type scalar LQs coupled to second generation leptons and quarks.
Expected upper limit on the cross-section $(-1\sigma)$ for $U(1)$ vector LQ models in the minimal coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,min}_{23}\rightarrow c\nu) = 0.5$.
Expected upper limit on the cross-section $(+1\sigma)$ for $U(1)$ vector LQ models in the minimal coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,min}_{23}\rightarrow c\nu) = 0.5$.
Expected upper limit on the cross-section for $U(1)$ vector LQ models in the minimal coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,min}_{23}\rightarrow c\nu) = 0.5$.
Observed upper limit on the cross-section for $U(1)$ vector LQ models in the minimal coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,min}_{23}\rightarrow c\nu) = 0.5$.
Expected upper limit on the cross-section $(-1\sigma)$ for $U(1)$ vector LQ models in the Yang-Mills coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,YM}_{23}\rightarrow c\nu) = 0.5$.
Expected upper limit on the cross-section $(+1\sigma)$ for $U(1)$ vector LQ models in the Yang-Mills coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,YM}_{23}\rightarrow c\nu) = 0.5$.
Expected upper limit on the cross-section for $U(1)$ vector LQ models in the Yang-Mills coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,YM}_{23}\rightarrow c\nu) = 0.5$.
Observed upper limit on the cross-section for $U(1)$ vector LQ models in the Yang-Mills coupling scenario with $\beta_{23}=1$, corresponding to a branching fraction $\mathcal{B}(\mathrm{vLQ}^\mathrm{u,YM}_{23}\rightarrow c\nu) = 0.5$.
Distribution of $R_{\mathrm{ISR}}$ in SR-Comp-1c showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(450,430)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Distribution of $E_\mathrm{T}^\mathrm{miss}\mathrm{ Sig.}$ in SR-HM1 showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(1000,1)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Distribution of $m_{\mathrm{T}}^{\mathrm{min}}(c)$ in SR-HM2 showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(750,450)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Distribution of $R_{\mathrm{ISR}}$ in SR-Comp1 showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(600,550)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Distribution of $R_{\mathrm{ISR}}$ in SR-Comp2 showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(550,470)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Distribution of $R_{\mathrm{ISR}}$ in SR-Comp3 showing the data and the expected backgrounds, after simultaneously fitting all the control regions. The pre-fit yields for a representative $m(\tilde{t}_1,\tilde{\chi}_1^0)=(550,375)$ GeV signal is included. Processes with top quarks and multiple vector bosons are included in "Other". The right-most bin does not include the overflow entry but the $x$-axis range is chosen to include all observed data.
Acceptance across the SUSY signal grid for SR-Comp-1c.
Acceptance across the SUSY signal grid for SR-HM1.
Acceptance across the SUSY signal grid for SR-HM2.
Acceptance across the SUSY signal grid for SR-HM3.
Acceptance across the SUSY signal grid for SR-HM-Disc.
Acceptance across the SUSY signal grid for SR-Comp1.
Acceptance across the SUSY signal grid for SR-Comp2.
Acceptance across the SUSY signal grid for SR-Comp3.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM1.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM2.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM3.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM-Disc.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM1.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM2.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM3.
Acceptance across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM-Disc.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM1.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM2.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM3.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM-Disc.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM1.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM2.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM3.
Acceptance for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM-Disc.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM1. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM2. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM3. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM-Disc. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM1. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM2. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM3. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM-Disc. Due to the limited statistical power of the signal samples, efficiencies can fluctuate and can drop to zero.
Acceptance times efficiency across the SUSY signal grid for SR-Comp-1c.
Acceptance times efficiency across the SUSY signal grid for SR-HM1.
Acceptance times efficiency across the SUSY signal grid for SR-HM2.
Acceptance times efficiency across the SUSY signal grid for SR-HM3.
Acceptance times efficiency across the SUSY signal grid for SR-HM-Disc.
Acceptance times efficiency across the SUSY signal grid for SR-Comp1.
Acceptance times efficiency across the SUSY signal grid for SR-Comp2.
Acceptance times efficiency across the SUSY signal grid for SR-Comp3.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM1.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM2.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM3.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{21}$ signal grid for SR-HM-Disc.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM1.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM2.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM3.
Acceptance times efficiency across the $\mathrm{LQ}^\mathrm{u}_{22}$ signal grid for SR-HM-Disc.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM1.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM2.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM3.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,min}_{23}$ signal model in SR-HM-Disc.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM1.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM2.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM3.
Acceptance times efficiency for the $\mathrm{vLQ}^\mathrm{u,YM}_{23}$ signal model in SR-HM-Disc.
Cutflow table for SR-Comp-1c using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (450,430)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-Comp1 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (600,550)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-Comp2 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (550,470)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-Comp3 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (550,375)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM1 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (1000,1)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM2 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (750,450)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM3 using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (750,450)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM-Disc using the $m(\tilde{t}_{1},\tilde{\chi}_{1}^{0}) = (750,450)$ GeV signal point as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM1 using the $m(\mathrm{LQ}_{21}^\mathrm{u}) = 600$ GeV signal point, with a 50% branching fraction to $c\nu$, as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM2 using the $m(\mathrm{LQ}_{21}^\mathrm{u}) = 600$ GeV signal point, with a 50% branching fraction to $c\nu$, as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM3 using the $m(\mathrm{LQ}_{21}^\mathrm{u}) = 600$ GeV signal point, with a 50% branching fraction to $c\nu$, as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
Cutflow table for SR-HM-Disc using the $m(\mathrm{LQ}_{21}^\mathrm{u}) = 600$ GeV signal point, with a 50% branching fraction to $c\nu$, as the benchmark. All jet-related variables use jets with $p_\mathrm{T}>40$ GeV, however, the $E_\mathrm{T}^\mathrm{miss}$ is calculated with jets with $p_\mathrm{T}>20$ GeV. The "Preselection" requirement includes: $E_\mathrm{T}^\mathrm{miss}>250$ GeV; events containing electrons or muons are vetoed; at least two jets must be present of which at least one must be identified as a $c$-tagged jet; events with jets that have been identified as $b$-tagged are discarded; the minimum azimuthal angular ($\phi$) distance between the (up to) four leading jets and the $\vec{p}_\mathrm{T}^\mathrm{miss}$ is required to be greater than 0.4.
A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution for the SM MC after passing the selection criteria listed in Table 2.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution the 1800 GeV mass gluino R-hadron (right), after passing the selection criteria listed in Table 2.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the FAIL region for events passing the event selection and with $55 < p_{\mathrm{T}} < 200$ GeV.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the PASS region for events passing the event selection and with $55 < p_{\mathrm{T}} < 200$ GeV.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the FAIL region for events passing the event selection and with $p_{\mathrm{T}} > 200$ GeV.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the PASS region for events passing the event selection and with $p_{\mathrm{T}} > 200$ GeV.
Mass spectrum predicted in the signal region defined by $G_{\text{i}}^{\text{Strips}} > 0.22$ and $p_{\mathrm{T}} > 70$ GeV.
Cross section limits for gluino and supersymmetric top R-hadrons for both background prediction methods.
Cross section limits for supersymmetric tau models for both background prediction methods.
Cross section limits for DY-produced tau prime models (single and multicharged) for both background prediction methods.
Cross section limits for Z prime to multicharged tau prime model for both background prediction methods. All Z prime models assume a narrow width, and a 100% branching fraction to 600 GeV tau primes.
2D exclusion showing the observed cross section limit as a function of the multicharged tau prime mass and Z prime mass for the ionization method.
2D exclusion showing the observed cross section limit as a function of the multicharged tau prime mass and Z prime mass for the mass method.
Cumulative selection efficiency for the data and for two signal hypotheses.
Expected and observed mass limits obtained using 2017-2018 data for various HSCP candidate models,for the two background estimate methods.
Mass windows used in the mass method as a function of the signal target mass for the signal samples assuming a charge of $1e$ and $2e$, as appropriate to the signal model.
Mass spectrum predicted in the validation region defined by $0.018 < G_{\text{i}}^{\text{Strips}} < 0.057$ and $p_{\mathrm{T}} > 70$ GeV. The thresholds used in the $G_{\text{i}}^{\text{Strips}}$ requirement represent the 50% and 90% quantile of the distribution.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $\text{abs(}\eta\text{)}<0.3$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $0.3<\text{abs(}\eta\text{)}<0.6$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $0.6<\text{abs(}\eta\text{)}<0.9$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $0.9<\text{abs(}\eta\text{)}<1.2$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $1.2<\text{abs(}\eta\text{)}<2.1$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{g}$ signals as a function of $\beta$ for $2.1<\text{abs(}\eta\text{)}<2.4$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $\text{abs(}\eta\text{)}<0.3$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $0.3<\text{abs(}\eta\text{)}<0.6$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $0.6<\text{abs(}\eta\text{)}<0.9$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $0.9<\text{abs(}\eta\text{)}<1.2$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $1.2<\text{abs(}\eta\text{)}<2.1$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency for the $\tilde{\tau}$ signals as a function of $\beta$ for $2.1<\text{abs(}\eta\text{)}<2.4$. The up and down variations are conservatively estimated assuming a delay of 1.5 ns in the muon chambers (equivalent to the time resolution of the chambers) and are used to evaluate the signal systematic uncertainties.
Trigger efficiency as a function of $\beta$, for the $\tilde{g}$ signals.
Trigger efficiency as a function of $\beta$, for the $\tilde{\tau}$ signals.
Cross section limits for $\tilde{g}$ R-hadrons obtained with the ionization method.
Cross section limits for $\tilde{g}$ R-hadrons obtained with the mass method.
Cross section limits for $\tilde{t}$ R-hadrons obtained with the ionization method.
Cross section limits for $\tilde{t}$ R-hadrons obtained with the mass method.
Cross section limits for $\tilde{\tau}$ obtained with the ionization method.
Cross section limits for $\tilde{\tau}$ obtained with the mass method.
Cross section limits for $\tilde{\tau}$ production within the GMSB SPS7 modelobtained with the ionization method.
Cross section limits for $\tilde{\tau}$ production within the GMSB SPS7 model obtained with the mass method.
Cross section limits for DY-produced $\tau'$ with $abs(Q) = 1e$ with the ionization method.
Cross section limits for DY-produced $\tau'$ with $abs(Q) = 1e$ with the mass method.
Cross section limits for DY-produced $\tau'$ with $abs(Q) = 2e$ with the ionization method.
Cross section limits for DY-produced $\tau'$ with $abs(Q) = 2e$ with the mass method.
Cross section limits for the production of $Z'$ boson decaying into a pair of $\tau'$ fermions of charge $2e$ (with a branching fraction equal to 1 and a fixed $\tau'$ mass of 600 GeV), obtained with the ionization method.
Cross section limits for the production of $Z'$ boson decaying into a pair of $\tau'$ fermions of charge $2e$ (with a branching fraction equal to 1 and a fixed $\tau'$ mass of 600 GeV), obtained with the mass method.
Two-dimensional exclusion showing the observed cross section limit as a function of the masses of the $\tau'$ (on the $x$ axis) and of the $Z'$ boson (on the $y$ axis), for the ionization method.
Two-dimensional exclusion showing the observed cross section limit as a function of the masses of the $\tau'$ (on the $x$ axis) and of the $Z'$ boson (on the $y$ axis), for the mass method.
Expected background yield, expected signal yield, and observed data for the mass method for 2017.
Expected background yield, expected signal yield, and observed data for the mass method for 2018.
Selection efficieny for GMSB supersymmetric $\tau$.
Selection efficiency for gluino R-hardon samples.
Selection efficiency for supersymmetric top R-hadrons.
Selection efficiency for pair-produced supersymmetric $\tau$.
Selection efficiency for $\tau'$ with $|Q| = 1e$.
Selection efficiecny for $\tau'$ with $|Q| = 2e$.
Selection efficiency for $Z'$ (mass = 3 TeV) going to $\tau'$ with $|Q| = 2e$.
Selection efficiency for $Z'$ (mass 5 TeV) goes to $\tau'$ with $|Q| = 2e$.
Selection efficiency for $Z'$ going to $\tau'$ (mass 600 GeV) with $|Q| = 2e$.
Selection efficiency for $Z'$ going to $\tau'$ (mass 1 TeV) with charge $|Q| = 2e$.
This paper presents a search for supersymmetric particles in models with highly compressed mass spectra, in events consistent with being produced through vector boson fusion. The search uses 140 fb$^{-1}$ of proton-proton collision data at $\sqrt{s}=13$ TeV collected by the ATLAS experiment at the Large Hadron Collider. Events containing at least two jets with a large gap in pseudorapidity, large missing transverse momentum, and no reconstructed leptons are selected. A boosted decision tree is used to separate events consistent with the production of supersymmetric particles from those due to Standard Model backgrounds. The data are found to be consistent with Standard Model predictions. The results are interpreted using simplified models of $R$-parity-conserving supersymmetry in which the lightest supersymmetric partner is a bino-like neutralino with a mass similar to that of the lightest chargino and second-to-lightest neutralino, both of which are wino-like. Lower limits at 95% confidence level on the masses of next-to-lightest supersymmetric partners in this simplified model are established between 117 and 120 GeV when the lightest supersymmetric partners are within 1 GeV in mass.
Observed and predicted background distributions of the BDT score in $\text{SR}_\text{2j}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Observed and predicted background distributions of the BDT score in $\text{SR}_{\geq3\text{j}}$ after the exclusion fit. The nominal, pre-fit prediction of an example benchmark signal with $(m(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm}), \widetilde{\chi}_{1}^{0}) = (100, 99)$ GeV is shown in red. The 'Other' category contains rare backgrounds from diboson, triboson and top-quark production processes. The hatched band represents the post-fit experimental, theoretical, and statistical uncertainties in the total background. The bottom panel of each plot shows the ratio between the data and the post-fit background prediction.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_\text{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{\text{SUSY}}_{\text{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
Expected (dashed black line) and observed (solid red line) 95% CL exclusion limits on the compressed SUSY simplified model with a bino-like LSP and wino-like NLSPs being considered. These are shown with $\pm1\sigma_ ext{exp}$ (yellow band) from experimental systematic and statistical uncertainties, and with $\pm1\sigma^{ ext{SUSY}}_{ ext{theory}}$ (red dotted lines) from signal cross-section uncertainties, respectively. The limits set by the ATLAS searches using the soft lepton signature is illustrated by the blue region while the limit imposed by the LEP experiments is shown in grey.
The expected upper limits on the cross-sections at 95% CL for the simplified SUSY model featuring the production of mass-degenerate pairs of wino-like $\widetilde{\chi}_{2}^{0}$ and $\widetilde{\chi}_{1}^{\pm}$ particles in association with at least two jets. The production modes considered are $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$.
The observed upper limits on the cross-sections at 95% CL for the simplified SUSY model featuring the production of mass-degenerate pairs of wino-like $\widetilde{\chi}_{2}^{0}$ and $\widetilde{\chi}_{1}^{\pm}$ particles in association with at least two jets. The production modes considered are $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$.
Truth-level signal acceptances in $\text{SR}_\text{2j}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation. The generator-level selections are the same as the ones at reconstruction level.
Truth-level signal acceptances in $\text{SR}_{\geq\text{3j}}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The acceptance is defined as the fraction of accepted events divided by the total number of events in the generator-level signal Monte Carlo simulation. The generator-level selections are the same as the ones at reconstruction level.
Signal efficiencies in $\text{SR}_\text{2j}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. The generator-level selections are the same as the ones at reconstruction level.
Signal efficiencies in $\text{SR}_{\geq\text{3j}}$ with BDT score $\in [0.88, 1.0]$. All of the considered production modes ($\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm}$, $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp}$, $\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$, and $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\pm}$) are included. The efficiency is defined by the number of events of reconstructed-level signal simulation divided by the number of events obtained at generator level. The generator-level selections are the same as the ones at reconstruction level.
Event selection cutflows for signal samples with $m(\tilde\chi^0_2) =100~\text{GeV}$ and $\Delta m(\tilde\chi^0_2 / \tilde\chi^\pm_1,\tilde\chi^0_1) = 0.2~\text{GeV}, 1.0~\text{GeV},$ and $5.0~\text{GeV}$. The first number in the column for each mass point corresponds to the signal event yield after applying the associated cut while the second number in parentheses represents the efficiency with respect to the previous cut. All of the production modes are included. The total cross-section used to obtain the initial number of events ($\sigma$) includes the cuts applied at parton level as described in the main text.
A combination of the results of several searches for the electroweak production of the supersymmetric partners of standard model bosons, and of charged leptons, is presented. All searches use proton-proton collision data at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018. The analyzed data correspond to an integrated luminosity of up to 137 fb$^{-1}$. The results are interpreted in terms of simplified models of supersymmetry. Two new interpretations are added with this combination: a model spectrum with the bino as the lightest supersymmetric particle together with mass-degenerate higgsinos decaying to the bino and a standard model boson, and the compressed-spectrum region of a previously studied model of slepton pair production. Improved analysis techniques are employed to optimize sensitivity for the compressed spectra in the wino and slepton pair production models. The results are consistent with expectations from the standard model. The combination provides a more comprehensive coverage of the model parameter space than the individual searches, extending the exclusion by up to 125 GeV, and also targets some of the intermediate gaps in the mass coverage.
Post-fit distribution of the $M(ll)$ variable for the low-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the medium-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the high-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the ultrahigh-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the low-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '3l soft' signal region of the the '2/3l soft' analysis.
Post-fit distribution of the $M(ll)$ variable for the medium-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '3l soft' signal region of the the '2/3l soft' analysis.
Post-fit distribution of the $m_{\mathrm{T2}}(ll)$ variable for low-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $m_{\mathrm{T2}}(ll)$ variable for medium-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $m_{\mathrm{T2}}(ll)$ variable for high-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
Post-fit distribution of the $m_{\mathrm{T2}}(ll)$ variable for ultrahigh-$p_{\mathrm{T}}^{\mathrm{miss}}$ bins in the '2l soft' signal region of the '2/3l soft' analysis.
2SS $\ell/{\geq}\,3\ell$ search: observed and expected yields across the SRs in category A, events with three light leptons of which at least two form an OSSF pair, after the requirement that the leading-lepton $p_{\mathrm{T}}$ be greater than 30 GeV is applied.
2SS $\ell/{\geq}\,3\ell$ search: observed and expected yields across the SRs of the '${\geq}\ 3\ell$' search in category B, events with three light leptons and no OSSF pair, after the requirement that the leading-lepton $p_{\mathrm{T}}$ be greater than 30 GeV is applied.
Wino-bino model: cross section limits in the model parameter space, for wino-like chargino-neutralino production in the WZ topology for the full parameter space.
Wino-bino model: cross section limits in the model parameter space, for wino-like chargino-neutralino production in the WZ topology for the compressed space.
Wino-bino model: cross section limits in the model parameter space, for wino-like chargino-neutralino production in the WH topology for the full parameter space.
Wino-bino model: cross section limits in the model parameter space, for wino-like chargino-neutralino production with mixed topology with equal branching fraction to WZ and WH.
Wino-bino model: exclusion contours from the individual and combined analyses targeting WZ topology for the full parameter space. For visualization of the exclusion contours, linear interpolation is employed to account for the limited granularity of the available signal samples.
Wino-bino model: exclusion contours from the individual and combined analyses targeting the corresponding compressed region. For visualization of the exclusion contours, linear interpolation is employed to account for the limited granularity of the available signal samples.
Wino-bino model: exclusion contours from the individual and combined analyses targeting the WH topology for the full parameter space. For visualization of the exclusion contours, linear interpolation is employed to account for the limited granularity of the available signal samples.
Wino-bino model: exclusion contours from the individual and combined analyses targeting combined contours for these two topologies. For visualization of the exclusion contours, linear interpolation is employed to account for the limited granularity of the available signal samples.
GMSB model: expected and observed cross section limits for the neutralino-neutralino production for the ZZ topology.
GMSB model: expected and observed cross section limits for the neutralino-neutralino production for the HH topology.
GMSB model: expected and observed cross section limits for the neutralino-neutralino production for the mixed topology with equal branching fraction to H and Z.
GMSB model: cross section limits for neutralino-neutralino production as a function of the NSLP mass and the branching fraction to the H boson for the combination of the searches.
GMSB model: exclusion limit for neutralino-neutralino production as a function of the NSLP mass and the branching fraction to the H boson for the combination of the searches along with the input searches. For visualization of the exclusion contours, linear interpolation is employed to account for the limited granularity of the available signal samples.
Cross section upper limit(s) in the mass plane of NLSP and LSP masses for the higgsino-bino model.
Mass plane cross section upper limit for direct slepton pair production, with observed and expected exclusion limits in the full mass plane from the combination.
Mass plane cross section upper limit for direct slepton pair production, with observed and expected exclusion limits in the compressed region from '2/3l' soft search.
The results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum ($p_\text{T}^\text{miss}$), are reported. The study is based on a sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb$^{-1}$. As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low $p_\text{T}^\text{miss}$ regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level.
Best fit values of the two parameters $A$ and $m$ of the linear 2-to-4-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Uncertainties on $A$ and $m$ can be obtained from the covariance matrix of the fit, available as a separate table in this HEPData Record.
Covariance matrix of the two parameters $A$ and $m$ of the linear 2-to-4-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Best fit values of $A$ and m are available as a separate table in this HEPData record.
Best fit values of the two parameters $A$ and $m$ of the linear 2-to-5-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Uncertainties on $A$ and $m$ can be obtained from the covariance matrix of the fit, available as a separate table in this HEPData Record.
Covariance matrix of the two parameters $A$ and $m$ of the linear 2-to-5-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Best fit values of $A$ and m are available as a separate table in this HEPData record.
Best fit values of the two parameters $A$ and $m$ of the linear 2-to-6-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Uncertainties on $A$ and $m$ can be obtained from the covariance matrix of the fit, available as a separate table in this HEPData Record.
Covariance matrix of the two parameters $A$ and $m$ of the linear 2-to-6-jets-bin adjustment in the background Monte Carlo. Please see the text of the paper for an explanation of $A$ and $m$. Best fit values of $A$ and m are available as a separate table in this HEPData record.
This table contains the pre-fit background model (i.e. setting all nuisance parameters to 0), the post-fit background model (i.e. setting all nuisance parameters to their best fit values given the observed data), and the observed data in the 4 Jets bin. Uncertainties are provided, but per-bin uncertainties do not capture the correlations between bins with nuisance parameter variations. For a full analysis, the full covariance matrix between the search regions, also present in this HEPData record, should be used.
This table contains the pre-fit background model (i.e. setting all nuisance parameters to 0), the post-fit background model (i.e. setting all nuisance parameters to their best fit values given the observed data), and the observed data in the 5 Jets bin. Uncertainties are provided, but per-bin uncertainties do not capture the correlations between bins with nuisance parameter variations. For a full analysis, the full covariance matrix between the search regions, also present in this HEPData record, should be used.
This table contains the pre-fit background model (i.e. setting all nuisance parameters to 0), the post-fit background model (i.e. setting all nuisance parameters to their best fit values given the observed data), and the observed data in the $\geq 6$ Jets bin. Uncertainties are provided, but per-bin uncertainties do not capture the correlations between bins with nuisance parameter variations. For a full analysis, the full covariance matrix between the search regions, also present in this HEPData record, should be used.
Covariance matrix between search regions, estimated by toy MC runs, varying the nuisance parameters according to their covariance matrix before performing any fit. Note that the two columns ($S_T$ Bin (axis 1)) and ($N_{jets}$ Bin (axis 1)) together define the x-axis of the covariance, and the two columns ($S_T$ Bin (axis 2)) and ($N_{jets}$ Bin (axis 2)) together define the y-axis of the covariance.
Covariance matrix between search regions, estimated by toy MC runs, varying the nuisance parameters according to their covariance matrix in the background-only fit. Note that the two columns ($S_T$ Bin (axis 1)) and (NJets Bin (axis 1)) together define the x-axis of the covariance, and the two columns ($S_T$ Bin (axis 2)) and (NJets Bin (axis 2)) together define the y-axis of the covariance.
Scan through (gluino mass, neutralino mass) parameter-space. This table has the gluino and neutralino mass as the independent parameters, and the following as dependent parameters: 1. Expected upper limits (95% $CL_s$) on signal strength, with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainty terms from limited statistics. 2. Observed upper limits (95% $CL_s$) on signal strength, with a $\pm 1\sigma$ uncertainty from the theoretical prediction of the gluino production cross section. 3. Observed upper limits (95% $CL_s$) on gluino production cross section.
Scan through (squark mass, neutralino mass) parameter-space. This table has the squark and neutralino mass as the independent parameters, and the following as dependent parameters: 1. Expected upper limits (95% $CL_s$) on signal strength, with $\pm 1\sigma$ and $\pm 2\sigma$ uncertainty terms from limited statistics. 2. Observed upper limits (95% $CL_s$) on signal strength, with a $\pm 1\sigma$ uncertainty from the theoretical prediction of the squark production cross section. 3. Observed upper limits (95% $CL_s$) on squark production cross section.
A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb$^{-1}$, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level.
SM background predictions, data observations and signal yields in the signal region.
The 95% CL observed upper limits on the production cross sections for $m_{\tilde{g}}$ in T5bbbbZg.
Gluino - neutralino mass points lying on the observed exclusion contour of T5bbbbZg model.
The 95% CL expected upper limits on the production cross sections for $m_{\tilde{g}}$ in T5bbbbZg.
Gluino - neutralino mass points lying on the expected exclusion contour of T5bbbbZg model.
The 95% CL observed upper limits on the production cross sections for $m_{\tilde{g}}$ in T5qqqqHg.
Gluino - neutralino mass points lying on the observed exclusion contour of T5qqqqHg model.
The 95% CL expected upper limits on the production cross sections for $m_{\tilde{g}}$ in T5qqqqHg.
Gluino - neutralino mass points lying on the expected exclusion contour of T5qqqqHg model.
The 95% CL observed upper limits on the production cross sections for $m_{\tilde{g}}$ in T5ttttZg.
Gluino - neutralino mass points lying on the observed exclusion contour of T5ttttZg model.
The 95% CL expected upper limits on the production cross sections for $m_{\tilde{g}}$ in T5ttttZg.
Gluino - neutralino mass points lying on the expected exclusion contour of T5ttttZg model.
The 95% CL observed upper limits on the production cross sections for $m_{\tilde{t}}$ in T6ttZg.
Stop - neutralino mass points lying on the observed exclusion contour of T6ttZg model.
The 95% CL expected upper limits on the production cross sections for $m_{\tilde{t}}$ in T6ttZg.
Stop - neutralino mass points lying on the expected exclusion contour of T6ttZg model.
observed exclusion limit on the neutralino mass points in the TChiNGnn model.
expected exclusion limit on the neutralino mass points in the TChiNGnn model.
observed exclusion limit on the neutralino mass points in the TChiNG model.
expected exclusion limit on the neutralino mass points in the TChiNG model.
observed exclusion limit on the neutralino mass points in the TChiWG model.
expected exclusion limit on the neutralino mass points in the TChiWG model.
Acceptance times efficiency values with statistical uncertainties for T5bbbbZg in the SR region.
Acceptance times efficiency values with statistical uncertainties for T5qqqqHg in the SR region.
Acceptance times efficiency values with statistical uncertainties for T5ttttZg in the SR region.
Acceptance times efficiency values with statistical uncertainties for T6ttZg in the SR region.
Acceptance times efficiency values with statistical uncertainties for T5bbbbZg inclusive in the 45 bins.
Acceptance times efficiency values with statistical uncertainties for T5qqqqHg inclusive in the 45 bins.
Acceptance times efficiency values with statistical uncertainties for T5ttttZg inclusive in the 45 bins.
Acceptance times efficiency values with statistical uncertainties for T6ttZg inclusive in the 45 bins.
Acceptance times efficiency values with statistical uncertainties for TChiWG in the 45 optimised bins region.
Acceptance times efficiency values with statistical uncertainties for TChiNG in the 45 optimised bins region.
Event yield for T5bbbbZg and T5qqqqHg for each bin after SR baseline selections.
Event yield for T5ttttZg and T6ttZg for each bin after SR baseline selections.
Event yield for TChiWg and TChiNg for each bin after SR baseline selections.
A search for long-lived particles decaying in the outer regions of the CMS silicon tracker or in the calorimeters is presented. The search is based on a data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded with the CMS detector at the LHC in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. A novel technique, using trackless and out-of-time jet information combined in a deep neural network discriminator, is employed to identify decays of long-lived particles. The results are interpreted in a simplified model of chargino-neutralino production, where the neutralino is the next-to-lightest supersymmetric particle, is long-lived, and decays to a gravitino and either a Higgs or Z boson. This search is most sensitive to neutralino proper decay lengths of approximately 0.5 m, for which masses up to 1.18 TeV are excluded at 95% confidence level. The current search is the best result to date in the mass range from the kinematic limit imposed by the Higgs mass up to 1.8 TeV.
Summary of combined statistical and systematic uncertainties, the size of their effect, and whether it applies to the signal or background yield predictions. Ranges for signal systematic uncertainties reflect their impact on different signal parameter space points.
Feynman diagrams of the effective neutralino pair production in the GMSB simplified model in which the two neutralinos decay into two gravitinos ($\tilde{G}$) and two $Z$ bosons (left), a $Z$ and a Higgs boson ($H$) (center), or two Higgs bosons (right).
Feynman diagrams of the effective neutralino pair production in the GMSB simplified model in which the two neutralinos decay into two gravitinos ($\tilde{G}$) and two $Z$ bosons (left), a $Z$ and a Higgs boson ($H$) (center), or two Higgs bosons (right).
Feynman diagrams of the effective neutralino pair production in the GMSB simplified model in which the two neutralinos decay into two gravitinos ($\tilde{G}$) and two $Z$ bosons (left), a $Z$ and a Higgs boson ($H$) (center), or two Higgs bosons (right).
The distributions of the most impactful input variables to the TD jet tagger for signal (red, lighter) and collision background (blue, darker). They include the charged (upper left) and neutral (upper right) hadron energy fractions, the number of track constituents in the jet (middle left), the $\Delta R$ between the jet axis and the closest track associated with the PV (middle right), and the jet time (lower).
The distributions of the most impactful input variables to the TD jet tagger for signal (red, lighter) and collision background (blue, darker). They include the charged (upper left) and neutral (upper right) hadron energy fractions, the number of track constituents in the jet (middle left), the $\Delta R$ between the jet axis and the closest track associated with the PV (middle right), and the jet time (lower).
The distributions of the most impactful input variables to the TD jet tagger for signal (red, lighter) and collision background (blue, darker). They include the charged (upper left) and neutral (upper right) hadron energy fractions, the number of track constituents in the jet (middle left), the $\Delta R$ between the jet axis and the closest track associated with the PV (middle right), and the jet time (lower).
The distributions of the most impactful input variables to the TD jet tagger for signal (red, lighter) and collision background (blue, darker). They include the charged (upper left) and neutral (upper right) hadron energy fractions, the number of track constituents in the jet (middle left), the $\Delta R$ between the jet axis and the closest track associated with the PV (middle right), and the jet time (lower).
The distributions of the most impactful input variables to the TD jet tagger for signal (red, lighter) and collision background (blue, darker). They include the charged (upper left) and neutral (upper right) hadron energy fractions, the number of track constituents in the jet (middle left), the $\Delta R$ between the jet axis and the closest track associated with the PV (middle right), and the jet time (lower).
TD jet tagger score distributions (left) for signal (red, lighter) and collision background (blue, darker). Identification probability for the signal versus the misidentification probability for the background (right) with the tagger working point (w.~p.) used in the analysis shown as a blue marker. Both are evaluated using an independent sample of testing events.
TD jet tagger score distributions (left) for signal (red, lighter) and collision background (blue, darker). Identification probability for the signal versus the misidentification probability for the background (right) with the tagger working point (w.~p.) used in the analysis shown as a blue marker. Both are evaluated using an independent sample of testing events.
The efficiency of the TD jet tagger working point used in the analysis is shown as a function of the lab frame transverse decay length for simulated signals with $\chi$ mass of 400 GeV. The uncertainties shown account for lifetime dependence and statistical uncertainty.
The TD jet tagger score distributions for simulation (shaded histogram) and data (black markers) when using electrons from $W\to e\nu_e$ events as proxy objects for signal jets. The histograms and data points have been normalized to unit area. The last bin contains jets with tagger scores greater than 0.996, the threshold used to tag signal jets. Similar levels of agreement are observed for photon proxy objects from the $Z\to\ell^+\ell^-\gamma$ sample.
The TD jet tagger misidentification probability measured using the nominal $W$+jets MR (black round markers) is shown along with the systematic uncertainty (gray band), quantifying the degree of process dependence measured from alternative MRs. The measurements in the alternative MRs are displayed as well ($Z$+jets MR as green round markers, $t\bar{t}$ MR as red squared markers, QCD MR as blue triangular markers) along with their respective statistical uncertainty. On the left, this probability is shown for the first 19.9 fb$^{-1}$ of data collected in 2016, while on the right it is shown for the last 16.4 fb$^{-1}$ of data collected in 2016combined with data collected in 2017-2018.
The TD jet tagger misidentification probability measured using the nominal $W$+jets MR (black round markers) is shown along with the systematic uncertainty (gray band), quantifying the degree of process dependence measured from alternative MRs. The measurements in the alternative MRs are displayed as well ($Z$+jets MR as green round markers, $t\bar{t}$ MR as red squared markers, QCD MR as blue triangular markers) along with their respective statistical uncertainty. On the left, this probability is shown for the first 19.9 fb$^{-1}$ of data collected in 2016, while on the right it is shown for the last 16.4 fb$^{-1}$ of data collected in 2016combined with data collected in 2017-2018.
Distribution of the number of TD tagged jets for the $m_{\chi} = 400$ GeVsimulated signal samples with $c\tau_{\chi} = 0.5$ m (solid red line) and $c\tau_{\chi} = 3.0$ m (dotted green line), estimated background (blue square markers), and data (black round markers). The signal distributions are normalized to the expected cross section limit. The blue shaded region indicates the systematic uncertainty in the background prediction. No background prediction is shown for the bin with zero TD tagged jets as it is the main control region used to predict the background for the other two bins. There are zero observed events in the bin with two or more TD tagged jets.
Expected and observed 95% CL upper limits on $\sigma_{\chi\chi}$ as functions of $m_\chi$ in a scenario with $\mathcal{B}(\chi\to HG) = 0.5$ and $c\tau = 0.5$ m (left) or 3 m (right).
Expected and observed 95% CL upper limits on $\sigma_{\chi\chi}$ as functions of $m_\chi$ in a scenario with $\mathcal{B}(\chi\to HG) = 0.5$ and $c\tau = 0.5$ m (left) or 3 m (right).
Expected and observed 95% CL upper limits on $\sigma_{\chi\chi}$ as functions of $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 0.5$ and $m_{\chi} = 400$ GeV (left) or 1000 GeV (right).
Expected and observed 95% CL upper limits on $\sigma_{\chi\chi}$ as functions of $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 0.5$ and $m_{\chi} = 400$ GeV (left) or 1000 GeV (right).
The observed 95% CL upper limit on $\sigma_{\chi\chi}$ as a function of $m_{\chi}$ and $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 0.5$. The area enclosed by the dotted black line corresponds to the observed excluded region.
The distribution of the jet charged hadron energy fraction, a variable used as input to the TD jet tagger score, for simulation (shaded histogram) and data (black markers) when using electrons from $W\to e\nu_e$ events as proxy objects for signal jets. The histograms and data points have been normalized to unit area. Similar levels of agreement are observed for photon proxy objects from the $Z\to\ell^+\ell^-\gamma$ sample.
The distribution of the jet neutral hadron energy fraction, a variable used as input to the TD jet tagger score, for simulation (shaded histogram) and data (black markers) when using electrons from $W\to e\nu_e$ events as proxy objects for signal jets. The histograms and data points have been normalized to unit area. Similar levels of agreement are observed for photon proxy objects from the $Z\to\ell^+\ell^-\gamma$ sample.
The distribution of the number of track constituents in the jet, a variable used as input to the TD jet tagger score, for simulation (shaded histogram) and data (black markers) when using electrons from $W\to e\nu_e$ events as proxy objects for signal jets. The histograms and data points have been normalized to unit area. Similar levels of agreement are observed for photon proxy objects from the $Z\to\ell^+\ell^-\gamma$ sample.
The $\eta$ distribution of TD-tagged jets in a background-enriched control region that comprises events with exactly one TD-tagged jet. Observed data (black round markers) and the corresponding prediction based on control samples in data (empty squared markers), measured using the nominal $W$+jets MR, are compared. The prediction uncertainty (gray band) includes the systematic uncertainty quantifying the degree of process dependence measured from alternative MRs. The predictions for the shape and the normalization of the $\eta$ distribution are consistent with the data.
Jet time distribution in a sample of b-tagged jets from dilepton $t \bar{t}$ events in 2017 data-taking period (black round markers) and simulation (filled histogram). A Gaussian smearing procedure is applied to the jet time in the $t \bar{t}$ sample (green line) to correct for effects that are difficult to simulate (timing drift caused by crystals transparency loss due to detector aging, electronics jitter).
The observed 95% CL upper limit on $\sigma_{\chi\chi}$ as a function of $m_{\chi}$ and $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 1$. The area enclosed by the dotted black line corresponds to the observed excluded region.
The observed 95% CL upper limit on $\sigma_{\chi\chi}$ as a function of $m_{\chi}$ and $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 0.75$, $\mathcal{B}(\chi\to Z\tilde{G}) = 0.25$. The area enclosed by the dotted black line corresponds to the observed excluded region.
The observed 95% CL upper limit on $\sigma_{\chi\chi}$ as a function of $m_{\chi}$ and $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to H\tilde{G}) = 0.25$, $\mathcal{B}(\chi\to Z\tilde{G}) = 0.75$. The area enclosed by the dotted black line corresponds to the observed excluded region.
The observed 95% CL upper limit on $\sigma_{\chi\chi}$ as a function of $m_{\chi}$ and $c\tau_{\chi}$ in a scenario with $\mathcal{B}(\chi\to Z\tilde{G}) = 1$. The area enclosed by the dotted black line corresponds to the observed excluded region.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 127 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 127 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 127 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 150 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 150 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 150 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 175 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 175 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 175 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 200 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 200 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 200 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 300 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 300 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 300 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 400 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 400 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 400 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 600 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 600 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 600 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1000 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1000 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1000 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1250 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1500 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1500 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1500 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the merged topology, namely, the H (or Z) decay products are produced with an angular separation $\Delta R < 0.8$, and the H (or Z) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 3\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with exactly one quark in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and only one b-quark (or light quark) has $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 5\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
The efficiency of identifying a LLP decay as a TD-tagged jet in bins of the LLP transverse and longitudinal decay position. The sample used to compute the efficiency contains events with pair production of $\chi$ with a mass of 1800 GeV and a lifetime of 0.5 and 3 m, and considering the combinations of the $\chi$ decay modes considered in this search ($H \tilde{G} \rightarrow b\bar{b} \tilde{G}$ or $Z\tilde{G} \rightarrow q\bar{q} \tilde{G}$). The efficiency is calculated on top of the acceptance definition for the resolved topology with two quarks in acceptance, namely, the H (or Z) decay products are produced with an angular separation $\Delta R \geq 0.8$, and both b-quarks (or light quarks) have $p_T > 30$ GeV and $|\eta|<1$. The full simulation signal yield prediction can be reproduced within 7\%. This nonclosure uncertainty is added in quadrature to the statistical uncertainty of each bin.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 127 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 127 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 150 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 150 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 175 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 175 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 200 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 200 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 250 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 250 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 300 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 300 GeV.
Cutflow table for a $\tilde{\chi}_{1}^{0}$ signal sample with a mass of 400 GeV.
Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled. The peak in the expected $gg\phi$ limit is tribute to a loss of sensitivity around $90\text{ GeV}$ due to the background from $Z/\gamma^\ast\rightarrow\tau\tau$ events. Numerical values provided in this table correspond to Figure 10a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 10b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 37 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $bb\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 38 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 39 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on the product of the cross sections and branching fraction for the decay into $\tau$ leptons for $gg\phi$ production in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$, in addition to $\text{H}(125)$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 40 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 31 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been profiled. Numerical values provided in this table correspond to Figure 32 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 33 of the auxilliary material of the publication.
Local significance for a $bb\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $gg\phi$ production rate has been fixed to zero. Numerical values provided in this table correspond to Figure 34 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only top quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 35 of the auxilliary material of the publication.
Local significance for a $gg\phi$ signal in a mass range of $60\leq m_\phi\leq 3500\text{ GeV}$. In this case, $bb\phi$ production rate has been profiled and only bottom quarks have been considered in the $gg\phi$ loop. Numerical values provided in this table correspond to Figure 36 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$), via vector boson fusion ($qq\phi$) or in association with b quarks ($bb\phi$). In this case, $bb\phi$ production rate is profiled, whereas the scan is performed in the $gg\phi$ and $qq\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 64 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 65 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $60\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 66 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 67 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $80\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 68 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 69 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $95\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 70 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 71 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $100\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 72 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 73 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $120\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 74 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 75 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $125\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 76 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 77 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $130\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 78 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 79 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $140\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 80 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 81 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $160\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 82 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 83 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $180\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 84 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a scalar resonance ($H$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggH$ and $bbH$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{H}$ and the square root of the branching fraction for the $H\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $H$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 85 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a pseudoscalar resonance ($A$) with a mass of $200\text{ GeV}$, produced via gluon-fusion or in association with b quarks. For this scan, we assume the $ggA$ and $bbA$ processes are only influenced by the Yukawa couplings to the top and bottom quarks and we scale the cross sections predicted for a SM-like Higgs boson of the same mass depending on these couplings. For the $ggA$ process, there is also an enhancement to the cross section for a pseudoscalar resonance compared to the equivalent process for the production of a scalar. This enhancement is taken into account when scaling the cross sections for the SM-like Higgs boson. The scans are displayed for the product of the reduced Yukawa couplings $g_{b,\,t}^{A}$ and the square root of the branching fraction for the $A\rightarrow\tau\tau$ decay process, where the former is defined as the ratio of the Yukawa coupling of $A$ to the Yukawa coupling expected for a SM-like Higgs boson. Numerical values provided in this table correspond to Figure 86 of the auxilliary material of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 1 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12a of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 2 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 12b of the publication.
Expected and observed $95\%\text{ CL}$ upper limits on $g_U$ in the VLQ BM 3 scenario in a mass range of $1\leq m_U\leq 5\text{ TeV}$. The central $68$ and $95\%$ intervals are given in addition to the expected median value. Numerical values provided in this table correspond to Figure 92 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $60\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11a of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $80\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 41 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $95\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 42 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $100\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11b of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $120\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 43 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $125\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11c of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $130\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 44 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $140\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 45 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $160\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11d of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $180\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 46 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 47 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $250\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11e of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 48 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $350\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 49 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 50 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $450\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 51 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11f of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 52 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $700\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 53 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 54 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 55 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11g of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11h of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1400\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 56 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 57 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $1800\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 58 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2000\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 59 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2300\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 60 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2600\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 61 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $2900\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 62 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3200\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 63 of the auxilliary material of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a resonance ($\phi$) with a mass of $3500\text{ GeV}$, produced via gluon-fusion ($gg\phi$) or in association with b quarks ($bb\phi$). The scan is performed in the $gg\phi$ and $bb\phi$ production cross-sections, both multiplied with the branching fraction for the $\phi\rightarrow\tau\tau$ decay process. Numerical values provided in this table correspond to Figure 11i of the publication, but evaluated on Asimov pseudodata.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 99 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 100 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 101 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 102 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 1 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 103 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 104 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 105 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 106 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 107 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 2 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 108 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 1\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 109 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 2\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 110 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 3\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 111 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 4\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 112 of the auxilliary material of the publication.
Scan of the likelihood function for the search for a vector leptoquark with $m_{U} = 5\text{ TeV}$, in the VLQ BM 3 scenario. The scan is performed in the $g_{U}$ coupling, for three different categorization strategies, combining only "No b tag" categories, only "b tag" categories, and all categories. Numerical values provided in this table correspond to Figure 113 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13a of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13a of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ quantile contour of Figure 13b of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ quantile contour of Figure 13b of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\tau})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 114 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 115 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{1}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 116 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{2}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 117 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_h^{125\,\mu_{3}-}$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 118 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h_{1}}^{125}(CPV)$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 119 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario. Numerical values provided in this table correspond to the observed contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM hMSSM scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 120 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h,\,\text{EFT}}^{125}(\tilde{\chi})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 122 of the auxilliary material of the publication.
Observed $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario. Numerical values provided in this table correspond to the observed contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the median of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. Numerical values provided in this table correspond to the expected median contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $16\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $16\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $84\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $68\%$ confidence interval band. Numerical values provided in this table correspond to the expected $84\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $2.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $2.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Expected $95\%\text{ CL}$ exclusion contour in the MSSM $M_{h}^{125}(\text{alignment})$ scenario, evaluated at the $97.5\%$ quantile of the test-statistic distribution $f(\tilde{q}_\mu|\text{SM})$ under SM hypothesis. This contour is part of the $95\%$ confidence interval band. Numerical values provided in this table correspond to the expected $97.5\%$ contour of Figure 123 of the auxilliary material of the publication.
Fractions of the cross-section $\sigma(gg\phi)$ as expected from SM for the loop contributions with only top quarks, only bottom quarks and from the top-bottom interference. These values are used to scale the corresponding signal components for a given mass $m_\phi$.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for high-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 25 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8a of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 26 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8b of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 27 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 28 of the auxilliary material of the publication, but restricted to and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8c of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 29 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8d of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 30 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8e of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the high-mass analysis $m_{T}^{tot}$. Numerical values provided in this table correspond to Figure 8f of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the $t\bar{t}$ control region $m_{T}^{tot}$ for low-mass analysis. Numerical values provided in this table correspond to the $t\bar{t}$ control region of the publication, restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 11 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 12 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 13 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 14 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to High-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 10 of the auxilliary material of the publication, but restricted to Medium-$D_\zeta$ category and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $e\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 16 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 17 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 18 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 19 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 15 of the auxilliary material of the publication, but restricted to $\mu\tau_{h}$ final state and 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 21 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 23 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 24 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 20 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.