Date

Mesure de la polarisation du proton de recul dans la diffusion élastique pi+- p entre 550 et 1025 MeV

Yonnet, Jacques ;
CNRS-A-O-4171, 1970.
Inspire Record 1187688 DOI 10.17182/hepdata.1304

None

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measurement of polarization transfer kappa(0) and tensor analyzing power T(20) in the backward elastic d p scattering

Punjabi, V. ; Abegg, R. ; Belostotsky, S. ; et al.
Phys.Lett.B 350 (1995) 178-183, 1995.
Inspire Record 405206 DOI 10.17182/hepdata.28545

The polarization transfer κ 0 and the tensor analyzing power T 20 for the 1 H d p)d reaction have been measured up to an internal momentum of k = 0.58 GeV/c. Comparison of the same observables obtained in recent studies for 1 H d p)d reaction, as a function of k , show different behavior. However the data from these two reactions are almost identical when compared in T 20 versus κ 0 correlation plots. We discuss similarities and differences observed in the two reactions.

1 data table match query

The authors use the Infinite Momentum Frame variable K= M( proton) * sqrt(1/(4*a*(1-a)) - 1), where a = (E(proton)+P_long(proton))/(E(deut)+P(deut)).


Angular analysis of the $B^{0}\rightarrow K^{*0}\mu^{+}\mu^{-}$ decay

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
JHEP 02 (2016) 104, 2016.
Inspire Record 1409497 DOI 10.17182/hepdata.74247

An angular analysis of the $B^{0}\rightarrow K^{*0}(\rightarrow K^{+}\pi^{-})\mu^{+}\mu^{-}$ decay is presented. The dataset corresponds to an integrated luminosity of $3.0\,{\mbox{fb}^{-1}}$ of $pp$ collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine $C\!P$-averaged observables and $C\!P$ asymmetries, taking account of possible contamination from decays with the $K^{+}\pi^{-}$ system in an S-wave configuration. The angular observables and their correlations are reported in bins of $q^2$, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for $q^2$-dependent decay amplitudes in the region $1.1

83 data tables match query

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit.

CP-averaged angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

CP-asymmetric angular observables evaluated by the unbinned maximum likelihood fit. The first uncertainties are statistical and the second systematic.

More…

Full Angular Distribution of the Analyzing Power in $\bar{p} p$ Elastic Scattering at 697-{MeV}/$c$

Bertini, R. ; Costa, M. ; Perrot, F. ; et al.
Phys.Lett.B 228 (1989) 531-535, 1989.
Inspire Record 280163 DOI 10.17182/hepdata.29779

Full angular distributions of the differential cross-section dσ/dμ and of the analysing power A y in p p elastic scattering have been measured at 697 MeV/ c . The results of A y are compared with the predictions of various theoretical models.

3 data tables match query

No description provided.

No description provided.

Legendre Polynomials from fit to angular distribution (LEG(L=0)=3.59 +- 0.02).


MEASUREMENT OF THE SPIN CORRELATION PARAMETER A(00NN) AND OF THE ANALYZING POWER FOR P P ELASTIC SCATTERING IN THE ENERGY RANGE FROM 0.5-GEV TO 0.8-GEV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Nucl.Phys.B 262 (1985) 727-743, 1985.
Inspire Record 227731 DOI 10.17182/hepdata.33710

The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.

15 data tables match query

No description provided.

No description provided.

No description provided.

More…

MEASUREMENT OF THE TOTAL CROSS-SECTION DIFFERENCE DELTA (SIGMA-L) (P P IN THE ENERGY RANGE FROM 0.52-GEV TO 2.8-GEV

Bystricky, J. ; Chaumette, P. ; Deregel, J. ; et al.
Phys.Lett.B 142 (1984) 130-134, 1984.
Inspire Record 206656 DOI 10.17182/hepdata.30540

The total cross section difference Δα L (pp) for proton-proton scattering with beam and target polarized longitudinally parallel and antiparallel, respectively, has been measured using the polarized proton beam from SATURNE II and a frozen spin polarized proton target. The beam polarization was reversed from pulse to pulse, and at each energy Δα L was measured for both signs of target polarization. The data below 800 MeV confirm the previously observed structures. The cross section difference is found to change by 8.0 ± 0.5 mb between 520 MeV and 760 MeV. At the higher energies the results show no indication for similar structures or for a change of the sign of Δα L .

1 data table match query

ERRORS INCLUDE UNCERTAINTY IN THE BEAM POLARIZATION.


Measurement of the Total Cross-section Difference $\Delta \sigma^-$t ($p p$) in the Energy Range From 0.43-{GeV} to 2.4-{GeV}

Perrot, F. ; Azaiez, H. ; Ball, J. ; et al.
Nucl.Phys.B 278 (1986) 881-904, 1986.
Inspire Record 228310 DOI 10.17182/hepdata.33569

The SATURNE II polarized proton beam and the Saclay frozen spin polarized proton target were used to measure the total cross section difference Δσ T = −2 σ 1 tot at 26 energies between 0.43 and 2.4 GeV. Here Δσ T is the total cross section difference for transverse beam and target spins parallel and antiparallel, respectively, and σ 1tot is one of spin-dependent terms in the total cross section σ tot . The energy dependence of Δσ T below 1 GeV shows similar structures as for Δσ L . An additional minimum appears at about 1.3 GeV, which involves a structure in singlet spin partial waves.

1 data table match query

Errors contain both statistics and systematics.


Measurement of the analyzing power in anti-p p elastic scattering at 439-MeV/c and 544 MeV/c

Kunne, F. ; Bertini, R. ; Costa, M. ; et al.
Phys.Lett.B 261 (1991) 188-190, 1991.
Inspire Record 314564 DOI 10.17182/hepdata.29399

The angular distributions of the analyzing power A y and of the differential cross section d σ/ d Ω in p p elastic scattering have been measured at 439 and 544 MeV/c. The results of A y are compared with various theoretical models.

4 data tables match query

Data requested from authors.

Legendre fit polynomials.

Normalized Legendre fit polynomials.

More…

Strong Energy Dependence of the Analyzing Power in the $p p \to d \pi^+$ Reaction and the Question of an Isovector Dibaryon Resonance. 2.

Bertini, R. ; Roy, G. ; Durand, J.M. ; et al.
Phys.Lett.B 203 (1988) 18-21, 1988.
Inspire Record 247925 DOI 10.17182/hepdata.29981

Forward angular distributions of the analysing power for the pp→d π + reaction have been measured at six energies T p =1.2, 1.4, 1.6, 1.8, 2.0, 2.3 GeV. A strong energy dependence is observed for A y 0 ( t =0) and A y 0 ( θ CM π =90°). The data are compared with the backward angular distributions previously published and suggest the existence of a resonant state in the pp system at the approximate energy of 2.7 GeV.

6 data tables match query

No description provided.

No description provided.

No description provided.

More…

Subthrehold K+ production in deuteron and alpha induced nuclear reactions.

Debowsky, M. ; Senger, P. ; Boivin, M. ; et al.
NUCL-EX-9709002, 1997.
Inspire Record 448262 DOI 10.17182/hepdata.31401

Double differential cross sections have been measured for pi+ and K+ emitted around midraidity in d+A and He+A collisions at a beam kinetic energy of 1.15 GeV/nucleon. The total pi+ yield increases by a factor of about 2 when using an alpha projectile instead of a deuteron whereas the K+ yield increases by a factor of about 4. According to transport calculations, the K+ enhancement depends both on the number of hadron-hadron collisions and on the energy available in those collisions: their center-of-mass energy increases with increasing number of projectile nucleons.

2 data tables match query

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is PI+ kinectic energy in the nucleon-nucleon center of mass frame.

The spectra are fitted by the equation d3(sig)/d3(p) = CONST*exp(-Ekin/SLOPE), where Ekin is K+ kinectic energy in the nucleon-nucleon center of mass frame.