Measurements of the sphericity of primary charged particles in minimum bias proton--proton collisions at $\sqrt{s}=0.9$, 2.76 and 7 TeV with the ALICE detector at the LHC are presented. The observable is linearized to be collinear safe and is measured in the plane perpendicular to the beam direction using primary charged tracks with $p_{\rm T}\geq0.5$ GeV/c in $|\eta|\leq0.8$. The mean sphericity as a function of the charged particle multiplicity at mid-rapidity ($N_{\rm ch}$) is reported for events with different $p_{\rm T}$ scales ("soft" and "hard") defined by the transverse momentum of the leading particle. In addition, the mean charged particle transverse momentum versus multiplicity is presented for the different event classes, and the sphericity distributions in bins of multiplicity are presented. The data are compared with calculations of standard Monte Carlo event generators. The transverse sphericity is found to grow with multiplicity at all collision energies, with a steeper rise at low $N_{\rm ch}$, whereas the event generators show the opposite tendency. The combined study of the sphericity and the mean $p_{\rm T}$ with multiplicity indicates that most of the tested event generators produce events with higher multiplicity by generating more back-to-back jets resulting in decreased sphericity (and isotropy). The PYTHIA6 generator with tune PERUGIA-2011 exhibits a noticeable improvement in describing the data, compared to the other tested generators.
pp @ 900 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 7000 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
pp @ 2760 GeV, Mean Transverse Sphericity (y) vs Multiplicity.
The first measurements of the invariant differential cross sections of inclusive $\pi^0$ and $\eta$ meson production at mid-rapidity in proton-proton collisions at $\sqrt{s}=0.9$ TeV and $\sqrt{s}=7$ TeV are reported. The $\pi^0$ measurement covers the ranges $0.4<p_T<7$ GeV/$c$ and $0.3<p_T<25$ GeV/$c$ for these two energies, respectively. The production of $\eta$ mesons was measured at $\sqrt{s}=7$ TeV in the range $0.4<p_T<15$ GeV/$c$. Next-to-Leading Order perturbative QCD calculations, which are consistent with the $\pi^0$ spectrum at $\sqrt{s}=0.9$ TeV, overestimate those of $\pi^0$ and $\eta$ mesons at $\sqrt{s}=7$ TeV, but agree with the measured $\eta/\pi^0$ ratio at $\sqrt{s}=7$ TeV.
The measured invariant differential section for inclusive PI0 production at a centre-of-mass energy of 7 TeV.
The measured invariant differential section for inclusive PI0 production at a centre-of-mass energy of 0.9 TeV.
The measured invariant differential section for inclusive ETA production at a centre-of-mass energy of 7 TeV.
The $p_{\rm T}$-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D$^0$, D$^+$, and D$^{*+}$ in the rapidity range $|y|<0.5$, and for transverse momentum $1< p_{\rm T} <12$ GeV/$c$, were measured in proton-proton collisions at $\sqrt{s} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D$^0 \rightarrow $K$\pi$, D$^+ \rightarrow $K$\pi\pi$, D$^{*+} \rightarrow $D$^0\pi$, and their charge conjugates, and was performed on a $L_{\rm int} = 1.1$ nb$^{-1}$ event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at $\sqrt{s} = 2.76$ TeV and at 7 TeV was evaluated by extrapolating to the full phase space the $p_{\rm T}$-differential production cross sections at $\sqrt{s} = 2.76$ TeV and our previous measurements at $\sqrt{s} = 7$ TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.
Production cross section in |y| < 0.5 for prompt D0, D+, and D*+ mesons in pp collisions at sqrt(s) = 2.76 TeV, in transverse momentum intervals. The second (sys) error is the uncertainty on the respective branching ratios.
Visible production cross sections of prompt D mesons for |y|<0.5 in pp collisions at sqrts=2.76 and 7 TeV. The normalization systematic uncertainty of 1.9% (3.5%) at sqrts=2.76 (7) TeV and the decay BR uncertainties are not quoted here.
Production cross sections dsig/dy of D mesons, integrated over all pt for |y|<0.5. The second (sys) error is the from the luminosity uncertainty, the third from the branching-ratio uncertainties and the fourth is from the extrapolation uncertainty.
The ALICE Collaboration has measured the inclusive production of muons from heavy flavour decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at $\sqrt {s_{NN}}$ = 2.76 TeV. The $p_{\rm T}$-differential inclusive cross section of muons from heavy flavour decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of pt and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < $p_{\rm T}$ < 10 GeV/$c$. The suppression shows no significant $p_{\rm T}$ dependence.
Transverse momentum differential inclusive cross section of muons from heavy-flavour decays in the rapidity range 2.5-4.
RAA of muons from heavy-flavour decays in the rapidity range 2.5-4 as a function of PT in the 0-10% and 40-80% centrality classes. The second (sys) error is the separate normalization error for each class.
RAA of muons from heavy-flavour decays as a function of the mean number of participating nucleons, NPART, in the rapidity range 2.5-4.0 and PT 6-10 GeV. The first (sys) error is the correlated systematic error and the second is the uncorrelated systematic error.
This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (\={t}) in the emu continuum using 2.1/fb of data collected by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95% C.L. are calculated as a function of the scalar top mass (m_{\={t}}). The upper limits on the production cross section for pp->emuX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_{\={t}}=95 GeV to 30 fb for m_{\={t}}=1000 GeV.
The observed E-MU invariant mass distribution plus SM background and signal predicitons for a n stop mass of 95 GeV.
Information about the signal samples used.
The ratios of the observed and expected upper cross section limits to the theoretical cross sections as a function of the scalar top mass.
The elliptic, $v_2$, triangular, $v_3$, and quadrangular, $v_4$, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 2.76$ TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range $|\eta|<0.8$ at different collision centralities and as a function of transverse momentum, $p_{\rm T}$, out to $p_{\rm T}=20$ GeV/$c$. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for $p_{\rm T}>8$ GeV/$c$. The small $p_{\rm T}$ dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to $p_{\rm T}=8$ GeV/$c$. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least $p_{\rm T}=8$ GeV/$c$ indicating that the particle type dependence persists out to high $p_{\rm T}$.
Elliptic flow (v2) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
Elliptic flow (v2) estimated with four-particle cumulants measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
Triangular flow (v3) estimated with Event Plane method (with eta gap of 2.0) measured for unidentified charged particles as a function of transverse momentum for various centrality classes.
The differential production cross section of electrons from semileptonic heavy-flavour hadron decays has been measured at mid-rapidity ($|y| < 0.5$) in proton-proton collisions at $\sqrt{s} = 7$ TeV with ALICE at the LHC. Electrons were measured in the transverse momentum range 0.5 $<p_{\rm T}<$ 8 GeV/$c$. Predictions from a fixed order perturbative QCD calculation with next-to-leading-log resummation agree with the data within the theoretical and experimental uncertainties.
Double differential cross section for heavy-flavour electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).
The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.
The measured Lambda/B integrated cross section and the ratio of anti-Lambda/B to Lambda/B cross sections.
The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B transverse momentum The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.
The measured Lambda/B differential cross section and the ratio of anti-Lambda/B to Lambda/B cross sections as a function of the Lambda/B absolute rapidity. The second and third systematic errors on the cross sections are the common luminosity and branching fraction uncertainties respectively.
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
A measurement of the multi-strange $\Xi^-$ and $\Omega^-$ baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at centre of mass energy of 7 TeV. The transverse momentum ($p_{\rm T}$) distributions were studied at mid-rapidity (|y| < 0.5) in the range of 0.6 < $p_{\rm T}$ < 8.5 GeV/$c$ for $\Xi^-$ and $\Xi^+$ baryons, and in the range of 0.8 < $p_{\rm T}$ < 5 GeV/$c$ for $\Omega^-$ and $\Omega^+$. Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current LHC data has allowed us to measure a difference between the mean $p_{\rm T}$ of $\Xi^-$ ($\Xi^+$) and $\Omega^-$ ($\Omega^+$). Particle yields, mean $p_{\rm T}$, and the spectra in the intermediate $p_{\rm T}$ range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for $\Omega^-$ ($\Omega^+$). This PYTHIA tune approaches the $p_{\rm T}$ spectra of $\Xi^-$ and $\Xi^+$ baryons below $p_{\rm T}$ < 0.85 GeV/$c$ and describes the $\Xi^-$ and $\Xi^+$ spectra above $p_{\rm T}$ > 6.0 GeV/$c$. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of ($\Omega^{-}+\Omega^+)/(\Xi^-+\Xi^+)$ as a function of transverse mass.
pT differential yield for OMEGA- and OMEGABAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.
pT differential yield for XI- and XIBAR+ production in P-P collisions in the rapidity range -5 to 0.5. Note: there is no division by (2.pi.pT) included in the ordinate values.
Ratio of (OMEGA-+OMEGABAR+) to (XI-+XIBAR+) production as a function of MT-M0. Note: the binning in (mT-m0) is the consequence of the pT binning of the Omega spectra.