Diboson production in association with jets is studied in the fully leptonic final states, pp $\to$ (Z$\gamma^*$)(Z/$\gamma^*$) + jets $\to$ 2$\ell$2$\ell'$ + jets, ($\ell,\ell'$ = e or $\mu$) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentum $p_\mathrm{T}$, pseudorapidity $\eta$, invariant mass and $\Delta\eta$ of the highest-$p_\mathrm{T}$ and second-highest-$p_\mathrm{T}$ jets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ + jets production in the whole phase space.
Differential cross sections normalized to the fiducial cross section as a function of the invariant mass of the four-lepton system, in the on-shell ZZ region
Differential cross sections normalized to the fiducial cross section as a function of the number of jets with $p_T > 30$ GeV
Differential cross sections normalized to the fiducial cross section as a function of the $p_T$ of the highest-$p_T$ jet
The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis uses a data sample corresponding to a total integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The W+c production cross section and the cross section ratio $R^\pm_\text{c}$ = $\sigma$(W$^+$+$\bar{\text{c}}$) / $\sigma$(W$^-$+$\text{c}$) are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$. The precision of the measurements is improved with respect to previous studies, reaching 1% in $R^\pm_\text{c}$ = 0.950 $\pm$ 0.005 (stat) $\pm$ 0.010 (syst). The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.
Particle level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Parton level efficiency*acceptance correction factors and cross section measurements for the four channels (W decay to muon or electron and charm identification via muon or secondary vertex inside a jet). The combined measurement is shown in the last row.
Inclusive cross section predictions at QCD NLO accuracy from MCFM using different PDF sets
Differential cross section measurements of W$^\pm\gamma$ production in proton-proton collisions at $\sqrt{s}$ = 13 TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016-2018 with an integrated luminosity of 138 fb$^{-1}$. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WW$\gamma$ vertex are determined within an effective field theory framework, focusing on the $\mathcal{O}_\mathrm{3W}$ operator. A simultaneous measurement of the photon transverse momentum and the azimuthal angle of the charged lepton in a special reference frame is performed. This two-dimensional approach provides up to a factor of ten more sensitivity to the interference between the standard model and the $\mathcal{O}_\mathrm{3W}$ contribution than using the transverse momentum alone.
Measured absolute differential $p_{\mathrm{T}}^{\gamma}$ cross section, compared to the MG5_aMC+PY8, GENEVA, MATRIX and MCFM predictions. The differential cross sections $\sigma_{j}(\mathrm{pp}\rightarrow\mathrm{W}^{\pm}\gamma\rightarrow\ell^{\pm}\nu\gamma)$, where $\ell$ denotes all three lepton flavors, are measured in the following fiducial region: $p_{\mathrm{T}}^{\ell} > 30\,\mathrm{GeV}$, $|\eta^{\ell}| < 2.5$, $p_{\mathrm{T}}^{\gamma} > 30\,\mathrm{GeV}$, $|\eta^{\gamma}| < 2.5$, $p_{\mathrm{T}}^{\mathrm{miss}} > 40\,\mathrm{GeV}$, and $\Delta R(\ell, \gamma) > 0.7$. The leptons are dressed by adding the four-momenta of any photons with $\Delta R(\ell, \gamma) < 0.1$ to the four-momentum of the lepton. A smooth-cone photon isolation is also applied, with parameters $\delta_{0}=0.4$, $\epsilon=1.0$, and $n=1$.
Measured fractional differential $p_{\mathrm{T}}^{\gamma}$ cross section, compared to the MG5_aMC+PY8, GENEVA, MATRIX and MCFM predictions. The differential cross sections $\sigma_{j}(\mathrm{pp}\rightarrow\mathrm{W}^{\pm}\gamma\rightarrow\ell^{\pm}\nu\gamma)$, where $\ell$ denotes all three lepton flavors, are measured in the following fiducial region: $p_{\mathrm{T}}^{\ell} > 30\,\mathrm{GeV}$, $|\eta^{\ell}| < 2.5$, $p_{\mathrm{T}}^{\gamma} > 30\,\mathrm{GeV}$, $|\eta^{\gamma}| < 2.5$, $p_{\mathrm{T}}^{\mathrm{miss}} > 40\,\mathrm{GeV}$, and $\Delta R(\ell, \gamma) > 0.7$. The leptons are dressed by adding the four-momenta of any photons with $\Delta R(\ell, \gamma) < 0.1$ to the four-momentum of the lepton. A smooth-cone photon isolation is also applied, with parameters $\delta_{0}=0.4$, $\epsilon=1.0$, and $n=1$.
Relative uncertainties on the measured absolute differential $p_{\mathrm{T}}^{\gamma}$ cross section.
A measurement of inclusive four-jet production in proton-proton collisions at a center-of-mass energy of 13\TeV is presented. The transverse momenta of jets within $\lvert\eta\rvert \lt$ 4.7 reach down to 35, 30, 25, and 20 GeV for the first-, second-, third-, and fourth-leading jet, respectively. Differential cross sections are measured as functions of the jet transverse momentum, jet pseudorapidity, and several other observables that describe the angular correlations between the jets. The measured distributions show sensitivity to different aspects of the underlying event, parton shower, and matrix element calculations. In particular, the interplay between angular correlations caused by parton shower and double-parton scattering contributions is shown to be important. The double-parton scattering contribution is extracted by means of a template fit to the data, using distributions for single-parton scattering obtained from Monte Carlo event generators and a double-parton scattering distribution constructed from inclusive single-jet events in data. The effective double-parton scattering cross section is calculated and discussed in view of previous measurements and of its dependence on the models used to describe the single-parton scattering background.
Comparison of the pT spectrum for the leading jet from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
Comparison of the pT spectrum for the sub-leading from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
Comparison of the pT spectrum for the third-leading from data to different PYTHIA8 (P8),HERWIG++ (H++),and HERWIG7 (H7) tunes.
The differential cross section and charge asymmetry for inclusive W boson production at $\sqrt{s} =$ 13 TeV is measured for the two transverse polarization states as a function of the W boson absolute rapidity. The measurement uses events in which a W boson decays to a neutrino and either a muon or an electron. The data sample of proton-proton collisions recorded with the CMS detector at the LHC in 2016 corresponds to an integrated luminosity of 35.9 fb$^{-1}$. The differential cross section and its value normalized to the total inclusive W boson production cross section are measured over the rapidity range $|y_\mathrm{W}|$ $\lt$ 2.5. In addition to the total fiducial cross section, the W boson double-differential cross section, d$^2\sigma$/d$p^\ell_\mathrm{T}$d$|\eta|$ and the charge asymmetry are measured as functions of the charged lepton transverse momentum and pseudorapidity. The precision of these measurements is used to constrain the parton distribution functions of the proton using the next-to-leading order NNPDF3.0 set.
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
Measured cross section from the helicity fit, divided by bin width, for combination of muon and electron channel
The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb^{-1}. Measurements were made for exchanged photon virtualities, Q^2, in the range 10 to 350 GeV^2. The photons were measured in the transverse-energy and pseudorapidity ranges 4 < ET^gamma < 15 GeV and -0.7 < eta^gamma < 0.9, and the jets were measured in the transverse-energy and pseudorapidity ranges 2.5 < ET^jet <35 GeV and -1.5 < eta^jet < 1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.
The measured differential cross section as a function of Q**2.
The measured differential cross section as a function of X.
The measured differential cross section as a function of the transverse energy of the photon.
Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.
The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 120 pb^{-1}. The hadronic decay channels D^{+} -> K^{0}_{S} pi^{+}, Lambda_{c}^{+} -> p K^{0}_{S} and Lambda_{c}^{+} -> Lambda pi^{+}, and their charge conjugates, were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the low transverse momentum region. The kinematic range is 0 < p_{T}(D^{+}, Lambda_{c}^{+}) < 10 GeV, |eta(D^{+}, Lambda_{c}^{+})| < 1.6, 1.5 < Q^{2} < 1000 GeV^{2} and 0.02 < y < 0.7. Inclusive and differential cross sections for the production of D^{+} mesons are compared to next-to-leading-order QCD predictions. The fraction of c quarks hadronising into Lambda_{c}^{+} baryons is extracted.
Total visible cross section for D+ production. The second systematic error is due to the uncertainty in the branching ratios for D+ to (KOS PI+).
Total visible cross section for LAMBDA/C+ production via the decay channel into (P K0S). The second systematic error reflects the uncertainty in the branching ratio to (P K0S).
Total visible cross section for LAMBDA/C+ production via the decay channel into (LAMBDA PI+). The second systematic error reflects the uncertainty in the branching ratio to (LAMBDA PI+).
Beauty production in deep inelastic scattering with events in which a muon and a jet are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 114 pb^-1. The fraction of events with beauty quarks in the data was determined using the distribution of the transverse momentum of the muon relative to the jet. The cross section for beauty production was measured in the kinematic range of photon virtuality, Q^2 > 2 Gev^2, and inelasticity, 0.05 < y < 0.7, with the requirement of a muon and a jet. Total and differential cross sections are presented and compared to QCD predictions. The beauty contribution to the structure function F_2 was extracted and is compared to theoretical predictions.
Total visible cross section for BBAR production and decay into MUON+JET.
Measured differential cross section as a function of Q**2.
Measured differential cross section as a function of the muon transverse momentum.