We report on a study of inclusive production ofD*± mesons ine+e− annihilation at c.m. energies between 28 and 46.8 GeV using the TASSO detector at the PETRA storage ring. A hardD*± energy spectrum is measured with a maximum nearED*±≃0.6Ebeam. The measured cross section ratio\((\sigma _{D^{* + } }+ \sigma _{D^{* - } } )/\sigma _{\mu \mu }= 1.28 \pm 0.09 \pm 0.18\) indicates thatD* production accounts for a large fraction of the observed charm production. Two complementary methods have been used to determine the forward-backward asymmetry of charm pair production due to electroweak interference. Combining both measurements the product of the axial vector couplings of the electron and the charm quark to the weak neutral current was determined to begAegAc=−(0.276±0.073), in agreement with the standard model prediction of −0.25. Using a sample of reconstructedD*± mesons, the relative strength of the strong interaction coupling of thec quark compared to that of an average of all flavours is measured as αs(c)/αs(all)=0.91±0.38±0.15, consistent with the coupling constant being flavour independent. An update of ourD0 lifetime measurement is presented, based on a considerable increase in statistics, the final result being\(\tau _{D^0= } (4.8 \pm _{0.9 - 0.7}^{1.0 + 0.5} )10^{ - 13} s\).
Cross sections using D0 --> K- PI+ channel.
Cross sections using D0 --> K- PI+ PI- PI+ channel.
No description provided.
We present evidence for the non-Abelian nature of QCD from a study of multijet events produced in e+e− annihilations from √s =50 to 57 GeV in the AMY detector at the KEK storage ring TRISTAN. A comparison of the three-jet event fraction at TRISTAN to the fraction of the DESY storage ring PETRA shows that the QCD coupling strength αs decreases with increasing Q2. In addition, measurements of the angular distributions of four-jet events show evidence for the triple-gluon vertex.
No description provided.
No description provided.
Central collisions of 800-GeV protons with the heavy components of nuclear emulsion, Ag107 and Br80, have been investigated to determine the characteristics of small-impact-parameter collisions and, by comparison with the analysis of inclusive proton-emulsion inelastic interactions and inelastic proton-nucleon collisions, to study the dependence of the interaction process on the mean number of intranuclear collisions 〈ν〉. The data are also compared with the results obtained in proton-emulsion collisions, both central and inclusive, at 200 GeV. The variations in the secondary-particle multiplicities and the normalized pseudorapidity density correlate with 〈ν〉 and demonstrate that proton-nucleus interactions, both central and inclusive, can be described adequately by the incoherent superposition of proton-nucleon collisions.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
NUCLEUS IS AVERAGE NUCLEUS OF EMULSION.
The reactions e + e − →γγγ and e + e − →γγγγ have been studied at center-of-mass energies between 35 and 46.8 GeV with an integrated luninosity of about 130 pb −1 accumulated with the CELLO detector at PETRA. The measurements are compared to QED calculations up to third and fourth orders of perturbation theory. Excellent agreement is observed.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
The production of charmed D* mesons in e+e− annihilations at a center-of-mass energy of 29 GeV has been studied using the time-projection-chamber (TPC) detector at the SLAC storage ring PEP. The production cross section, fragmentation function, and forward-backward asymmetry due to electroweak effects are measured, and a limit on D0-D¯0 mixing is determined.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
We use the reaction e+e−→μ+μ−, in the Mark J detector at the DESY high-energy e+e− collider PETRA, to test the standard electroweak theory and find good agreement. We also set limits on the parameters of several extended gauge theories.
CROSS SECTION MEASUREMENT RELATIVE TO PREDICTED QED CROSS SECTION.
FORWARD-BACKWARD ASYMMETRY. THE SYSTEMATIC ERROR IN THE ASYMMETRY IS <0.5 PCT.
ANGULAR DISTRIBUTIONS NOT GIVEN IN PAPER. SUPPLIED BY E.DEFFUR.