Measurement of W and Z Production Cross-sections at the CERN $\bar{p}p$ Collider

The UA2 collaboration Alitti, J. ; Ansari, R. ; Ansorge, R.E. ; et al.
Z.Phys.C 47 (1990) 11-22, 1990.
Inspire Record 294910 DOI 10.17182/hepdata.15179

Results on the production cross sections ofW andZ bosons detected in the UA2 experiment are given based on a large sample ofW→eν andZ→e+e− decays. The measured cross sections are σWe = 660±15(stat)±37(syst)pb, σZe = 70.4±5.5(stat)±4.0(syst)pb and their ratioR=9.38−0.72+0.82(stat)±0.25(syst). In the framework of the Standard Model, the measured value ofR is used to determine the total width of theW, Γ(W)=2.30±0.19(stat)±0.06(syst) GeV.

3 data tables match query

No description provided.

No description provided.

No description provided.


A Study of High Transverse Momentum Electrons Produced in anti-p p Collisions at 540-GeV

The UA2 & Bern-CERN-Copenhagen-Orsay-Pavia-Saclay collaborations Bagnaia, P. ; Banner, M. ; Battiston, R. ; et al.
Z.Phys.C 24 (1984) 1, 1984.
Inspire Record 200803 DOI 10.17182/hepdata.16251

The production of electrons with very high transverse momentum has been studied in the UA2 experiment at the CERN\(\bar pp\) collider (\(\sqrt s\)=540 GeV). From a sample of events containing an electron candidate withpT>15 GeV/c, we extract a clear signal resulting from the production of the charged intermediate vector bosonW±, which subsequently decays into an electron and a neutrino. We study theW production and decay properties. Further-more, we refine our results on the production and decay of the neutral vector bosonZ0. Finally, we compare the experimental results to the predictions of the standard model of the unified electro-weak theory.

1 data table match query

No description provided.


W Production Properties at the {CERN} {SPS} Collider

The UA1 collaboration Arnison, G. ; Albrow, M.G. ; Allkofer, C. ; et al.
Lett.Nuovo Cim. 44 (1985) 1-16, 1985.
Inspire Record 216595 DOI 10.17182/hepdata.37589

The production properties of a sample of 172 charged intermediate vector bosons produced at the CERN Super Proton Synchrotron Collider are described. The production cross-section, the longitudinal- and transverse-momentum distributions and the properties of hadronic jet activity produced in association with the weak bosons are in agreement with the expectations of the QCD-improved Drell-Yan mechanism.

1 data table match query

No description provided.


Measurement of W and Z boson production cross-sections

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 052003, 1999.
Inspire Record 494696 DOI 10.17182/hepdata.42125

DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.

2 data tables match query

No description provided.

Combined electron and muon analysis.


Observation of diffractive W boson production at the Tevatron

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 78 (1997) 2698-2703, 1997.
Inspire Record 440095 DOI 10.17182/hepdata.42230

We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.

1 data table match query

No description provided.


A Measurement of two jet decays of the W and Z bosons at the CERN anti-p p collider

The UA2 collaboration Alitti, J. ; Ansari, R. ; Ansorge, R.E. ; et al.
Z.Phys.C 49 (1991) 17-28, 1991.
Inspire Record 298412 DOI 10.17182/hepdata.15084

A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order αs2. A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.

1 data table match query

No description provided.


Measurement of the sigma(W + >= 1 jet) / sigma(W) cross-section ratio from anti-p p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 81 (1998) 1367-1372, 1998.
Inspire Record 469969 DOI 10.17182/hepdata.42146

The ratio of the W+≥1 jet cross section to the inclusive W cross section is measured using W±→e±ν events from p¯p collisions at s=1.8TeV. The data are from 108pb−1 of integrated luminosity collected with the Collider Detector at Fermilab. Measurements of the cross section ratio for jet transverse energy thresholds (ETmin) ranging from 15 to 95 GeV are compared to theoretical predictions using next-to-leading-order QCD calculations. Data and theory agree well for ETmin>25GeV, where the predictions lie within 1 standard deviation of the measured values.

1 data table match query

No description provided.


Measurement of the ratio R = sigma(w) Br (W) ---> mu neutrino) / sigma(Z) Br (Z ---> mu mu) and gamma(W) total at the CERN proton - anti-proton collider

The UA1 collaboration Albajar, C. ; Albrow, M.G. ; Allkofer, O.C. ; et al.
Phys.Lett.B 253 (1991) 503-510, 1991.
Inspire Record 300863 DOI 10.17182/hepdata.29508

An analysis of W and Z boson production at UA1, using 4.66 pb −1 of data from the 1988 and 1989 CERN p p Collider runs at s =0.63 TeV , yields R ≡ σ W Br(W→ μ v)/ σ z Br( Z → μμ )=10.4 −1.5 +1.8 stat.±0.8(syst.) We find R =9.5 −1.0 +1.1 (stat.+syst.) when combining all available UA1 data, in both the electron and muon channel, taken in the period 1983–1989. In the framework of the standard model, the value of R is used to infer the total width of the W boson, Γ W tot =2.18 −0.24 +0.26 (exp.)±0.04(theory) GeV/ c 2 .

1 data table match query

No description provided.


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table match query

The second DSYS error is due to luminosity.


Measurement of sigma B (W ---> e neutrino) and sigma B (Z0 ---> e+ e-) in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, M.G. ; Amendolia, S.R. ; et al.
Phys.Rev.Lett. 76 (1996) 3070-3075, 1996.
Inspire Record 399854 DOI 10.17182/hepdata.50120

We present a measurement of $\sigma \cdot B(W \rightarrow e \nu)$ and $\sigma \cdot B(Z~0 \rightarrow e~+e~-)$ in proton - antiproton collisions at $\sqrt{s} =1.8$ TeV using a significantly improved understanding of the integrated luminosity. The data represent an integrated luminosity of 19.7 pb$~{-1}$ from the 1992-1993 run with the Collider Detector at Fermilab (CDF). We find $\sigma \cdot B(W \rightarrow e \nu) = 2.49 \pm 0.12$nb and $\sigma \cdot B(Z~0 \rightarrow e~+e~-) = 0.231 \pm 0.012$nb.

1 data table match query

First systematic error is due to detector effects, the second is due to uncertainty in the luminosity.