We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of leading jet rapidity for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of second jet rapidity for events with two or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of third jet rapidity for events with three or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.
Exclusive $J/\psi$ and $\psi(2S)$ vector meson production has been observed in the dimuon channel using the LHCb detector. The cross-section times branching fractions to two muons with pseudorapidities between 2.0 and 4.5 are measured to be \begin{equation*} \sigma_{pp\rightarrow J/\psi (\rightarrow \mu^{+} \mu^{-})} (2.0 <\eta_{\mu^{\pm}}< 4.5) = 307 \pm 21 \pm 36~\text{pb}, \end{equation*} \begin{equation*} \sigma_{pp\rightarrow \psi(2S) (\rightarrow \mu^{+} \mu^{-})} (2.0 <\eta_{\mu^{\pm}}< 4.5) = 7.8 \pm 1.3 \pm 1.0~\text{pb}, \end{equation*} where the first uncertainties are statistical and the second are systematic. The measurements are found to be in good agreement with results from previous experiments and theoretical predictions. The $J/\psi$ photoproduction cross-section has been measured as a function of the photon-proton centre-of-mass energy. The results are consistent with measurements obtained at HERA and confirm a similar power law behaviour for the photoproduction cross-section.
Cross section times branching ratio to two muons with pseudorapidities between 2.0 and 4.5.
Cross-section measurements (nb) as a function of $J/\psi$ rapidity.
A measurement of the cross-section for pp$ \rightarrow$Z$ \rightarrow$e$^+$e$^-$ is presented using data at $\sqrt{s}=7$ TeV corresponding to an integrated luminosity of 0.94 fb$^{-1}$. The process is measured within the kinematic acceptance $p_{\mathrm{T}}>20$GeV/$c$ and $2<\eta<4.5$ for the daughter electrons and dielectron invariant mass in the range 60-120 GeV/$c^2$. The cross-section is determined to be $$\sigma(pp \rightarrow Z \rightarrow e^+ e^- )=76.0\pm0.8\pm2.0\pm2.6{\rm pb}$$ where the first uncertainty is statistical, the second is systematic and the third is the uncertainty in the luminosity. The measurement is performed as a function of Z rapidity and as a function of an angular variable which is closely related to the Z transverse momentum. The results are compared with previous LHCb measurements and with theoretical predictions from QCD.
Cross-section of $pp \to Z \to e^+ e^-$ integrated over $Z$ rapidity. The first quoted uncertainty is statistical, the second is the experimental systematic uncertainty, the third is the luminosity uncertainty and the fourth uncertainty is due to FSR correction.
Differential cross-section of $pp \to Z \to e^+ e^-$ as function $Z$ rapidity. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.
Differential cross-section of $pp \to Z \to e^+ e^-$ as function of $\phi^*$ kinematic variable constructed from electron pair azimuthal angle and pseudorapidity and correlated to $Z$ tranverse momentum. The first quoted uncertainty is statistical. The second and third uncertainties are the uncorrelated and correlated systematic uncertainties respectively. The fourth uncertainty is due to FSR correction.
Using 1.8 fb-1 of pp collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the Large Hadron Collider, we present measurements of the production cross sections of Upsilon(1S,2S,3S) mesons. Upsilon mesons are reconstructed using the di-muon decay mode. Total production cross sections for p_T<70 GeV and in the rapidity interval |Upsilon|<2.25 are measured to be 8.01+-0.02+-0.36+-0.31 nb, 2.05+-0.01+-0.12+-0.08 nb, 0.92+-0.01+-0.07+-0.04 nb respectively, with uncertainties separated into statistical, systematic, and luminosity measurement effects. In addition, differential cross section times di-muon branching fractions for Upsilon(1S), Upsilon(2S), and Upsilon(3S) as a function of Upsilon transverse momentum p_T and rapidity are presented. These cross sections are obtained assuming unpolarized production. If the production polarization is fully transverse or longitudinal with no azimuthal dependence in the helicity frame the cross section may vary by approximately +-20%. If a non-trivial azimuthal dependence is considered, integrated cross sections may be significantly enhanced by a factor of two or more. We compare our results to several theoretical models of Upsilon meson production, finding that none provide an accurate description of our data over the full range of Upsilon transverse momenta accessible with this dataset.
Corrected cross-section measurements in the isotopic spin-alignment scenario. The second (sys) error is the uncertainty in the luminosity.
Fiducial Upsilon(1S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(1S) pT in the Upsilon(1S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.
Fiducial Upsilon(2S) production cross-section, where pT>4 GeV and |eta|<2.3 for both muons, as a function of Upsilon(2S) pT in the Upsilon(2S) rapidity (|y|) bins 0-1.2 and 1.2-2.25. The first uncertainty is statistical, the second is systematic.
Measurements are presented of differential cross-sections for top quark pair production in pp collisions at sqrt(s) = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05/fb recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The background-subtracted differential distributions are corrected for detector effects, normalized to the total inclusive top quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10% and 20% and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed.
Relative differential cross-section (1/SIG)*D(SIG)/DM(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DPT(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DYRAP(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^0 X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^0)<4$, $3<p_T(D^0)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.
Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D_s^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D_s^+)<4$, $3<p_T(D_s^+)<12$ GeV/$c$ region.
The ALICE Collaboration has measured inclusive J/psi production in pp collisions at a center of mass energy sqrt(s)=2.76 TeV at the LHC. The results presented in this Letter refer to the rapidity ranges |y|<0.9 and 2.5<y<4 and have been obtained by measuring the electron and muon pair decay channels, respectively. The integrated luminosities for the two channels are L^e_int=1.1 nb^-1 and L^mu_int=19.9 nb^-1, and the corresponding signal statistics are N_J/psi^e+e-=59 +/- 14 and N_J/psi^mu+mu-=1364 +/- 53. We present dsigma_J/psi/dy for the two rapidity regions under study and, for the forward-y range, d^2sigma_J/psi/dydp_t in the transverse momentum domain 0<p_t<8 GeV/c. The results are compared with previously published results at sqrt(s)=7 TeV and with theoretical calculations.
Double differential J/$\psi$ production cross section at $\sqrt{s}=2.76$ TeV. The first uncertainty is statistical, the second one is $p_{\rm T}$-coorelated, the third one is uncorrelated. Polarization-related uncertainties are not included.
The $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
the $\sqrt{s}$-dependence of $\langle p_{\rm T}\rangle$ for inclusive J/$\psi$ production (forward rapidity).
The $p_{\rm T}$-differential inclusive production cross sections of the prompt charmed mesons $D^0$, $D^+$, and $D^{*+}$ in the rapidity range |y|<0.5 were measured in proton-proton collisions at $\sqrt{s} = 7$ TeV at the LHC using the ALICE detector. Reconstructing the decays $D^0\rightarrow K^-\pi^+$, $D^+\rightarrow K^-\pi^+\pi^+$, $D^{*+}\rightarrow D^0\pi^+$, and their charge conjugates, about 8,400 $D^0$, 2,900 $D^+$, and 2,600 $D^{*+}$ mesons with 1<$p_{\rm T}$<24 GeV/$c$ were counted, after selection cuts, in a data sample of 3.14x10$^8$ events collected with a minimum-bias trigger (integrated luminosity $L_{\rm int}$ = 5/nb). The results are described within uncertainties by predictions based on perturbative QCD.
Differential cross section for prompt D0 production.
Differential cross section for prompt D+ production.
Differential cross section for prompt D*+ production.
Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.
The production cross sections of the inclusive Drell-Yan processes W to l nu and Z/gamma to ll (l=e,mu) are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb^-1 collected in 2010, the precision of these measurements reaches a few per cent. The integrated and the differential W+- and Z/gamma cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at NNLO.
Cross sections for Z0 production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.
Correlated Systematic Uncertainties for Z0 production.
Cross sections for W- production from the combined electron and muon data sets in the defined fiducial regions. The first (sys) error is the uncorrelated systematic error and the second is the correlated systematic error.