psi production and anti-p N and pi- N interactions at 125-GeV/c and a determination of the gluon structure functions of the anti-p and the pi-

Tzamarias, S. ; Katsanevas, S. ; Kourkoumelis, C. ; et al.
Phys.Rev.D 48 (1993) 5067-5080, 1993.
Inspire Record 297586 DOI 10.17182/hepdata.22578

We have measured the cross section for production of ψ and ψ′ in p¯ and π− interactions with Be, Cu, and W targets in experiment E537 at Fermilab. The measurements were performed at 125 GeV/c using a forward dimuon spectrometer in a closed geometry configuration. The gluon structure functions of the p¯ and π− have been extracted from the measured dσdxF spectra of the produced ψ's. From the p¯W data we obtain, for p¯, xG(x)=(2.15±0.7)[1−x](6.83±0.5)[1+(5.85±0.95)x]. In the π− case, we obtain, from the W and the Be data separately, xG(x)=(1.49±0.03)[1−x](1.98±0.06) (for π−W), xG(x)=(1.10±0.10)[1−x](1.20±0.20) (for π−Be).

1 data table match query

No description provided.


Precision Study of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ Decay Dynamics

The BESIII collaboration Ablikim, M. ; Achasov, M. N. ; Ahmed, S. ; et al.
Phys.Rev.Lett. 120 (2018) 242003, 2018.
Inspire Record 1641075 DOI 10.17182/hepdata.89872

Using a low background data sample of $9.7\times10^{5}$ $J\psi\rightarrow\gamma\eta^\prime$, $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ events, which are 2 orders of magnitude larger than those from the previous experiments, recorded with the BESIII detector at BEPCII, the decay dynamics of $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ are studied with both model-dependent and model-independent approaches. The contributions of $\omega$ and the $\rho(770)-\omega$ interference are observed for the first time in the decays $\eta^\prime\rightarrow\gamma\pi^+\pi^-$ in both approaches. Additionally, a contribution from the box anomaly or the $\rho(1450)$ resonance is required in the model-dependent approach, while the process specific part of the decay amplitude is determined in the model-independent approach.

1 data table match query

Numbers of events selected (Column 2), numbers of background events from sideband (Column 3), efficiencies (Column 4), and resolution RMS (Column 5) for different $M_{\pi^+\pi^-}$ bins.


Measurement of the inelastic $pp$ cross-section at a centre-of-mass energy of $\sqrt{s}=7$ TeV

The LHCb collaboration Aaij, Roel ; Adeva, Bernardo ; Adinolfi, Marco ; et al.
JHEP 02 (2015) 129, 2015.
Inspire Record 1333223 DOI 10.17182/hepdata.69845

The cross-section for inelastic proton-proton collisions, with at least one prompt long-lived charged particle of transverse momentum $p_{\rm T}>0.2$ GeV/$c$ in the pseudorapidity range $2.0<\eta<4.5$, is measured by the LHCb experiment at a centre-of-mass energy of $\sqrt{s}=7$ TeV. The cross-section in this kinematic range is determined to be $\sigma_{\rm inel}^{\rm acc} = 55.0 \pm 2.4$ mb within the spectrometer acceptance with an experimental uncertainty that is dominated by systematic contributions. Extrapolation to the full phase space, using PYTHIA 6, yields $\sigma_{\rm inel} = 66.9 \pm 2.9 \pm 4.4$ mb, where the first uncertainty is experimental and the second is due to the extrapolation.

2 data tables match query

The cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, yielding one or more prompt long-lived charged particles in the kinematic range $p_T > 0.2$ GeV/$c$ and $2.0 < \eta < 4.5$ (LHCb acceptance). The quoted uncertainty that is almost completely systematic in nature as the purely statistical uncertainty is two orders of magnitude smaller.

The total cross-section for inelastic $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV, extrapolated using PYTHIA6 and different soft QCD tunes provided by PYTHIA 8.201 to estimate its uncertainty.


Measurement of the forward energy flow in pp collisions at sqrt(s)=7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
Eur.Phys.J.C 73 (2013) 2421, 2013.
Inspire Record 1208105 DOI 10.17182/hepdata.61691

The energy flow created in pp collisions at is studied within the pseudorapidity range 1.9<η<4.9 with data collected by the LHCb experiment. The measurements are performed for inclusive minimum-bias interactions, hard scattering processes and events with an enhanced or suppressed diffractive contribution. The results are compared to predictions given by Pythia-based and cosmic-ray event generators, which provide different models of soft hadronic interactions.

8 data tables match query

Charged energy flow for inclusive mininum bias events, requiring at least one charged particle in the pseudorapidity range 1.9 < eta < 4.9.

Charged energy flow for hard scattering events, requiring at least one charged particle with transverse momentum > 3 GeV and in the pseudorapidity range 1.9 < eta < 4.9.

Charged energy flow for diffractive enriched events, requiring no charged particles in the pseudorapidity range -3.5 < eta < -1.5 and at least one charged particle in the pseudorapidity range 1.9 < eta < 4.9.

More…

Prompt charm production in pp collisions at sqrt(s)=7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adametz, A ; et al.
Nucl.Phys.B 871 (2013) 1-20, 2013.
Inspire Record 1218996 DOI 10.17182/hepdata.60321

Charm production at the LHC in pp collisions at sqrt(s)=7 TeV is studied with the LHCb detector. The decays D0 -> K- pi+, D+ -> K- pi+ pi+, D*+ -> D0(K- pi+) pi+, D_s+ -> phi(K- K+) pi+, Lambda_c+ -> p K- pi+, and their charge conjugates are analysed in a data set corresponding to an integrated luminosity of 15 nb^{-1}. Differential cross-sections dsigma/dp_T are measured for prompt production of the five charmed hadron species in bins of transverse momentum and rapidity in the region 0 < p_T < 8 GeV/c and 2.0 < y < 4.5. Theoretical predictions are compared to the measured differential cross-sections. The integrated cross-sections of the charm hadrons are computed in the above p_T-y range, and their ratios are reported. A combination of the five integrated cross-section measurements gives sigma(c\bar{c})_{p_T < 8 GeV/c, 2.0 < y < 4.5} = 1419 +/- 12 (stat) +/- 116 (syst) +/- 65 (frag) microbarn, where the uncertainties are statistical, systematic, and due to the fragmentation functions.

5 data tables match query

Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of Lambda_c+ baryons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.

Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D0 mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.

Differential production cross-sections with respect to transverse momentum, dsigma / dp_T, of D+ mesons or their charge conjugates in proton-proton collisions at center-of-mass (CM) energy sqrt(s) = 7 TeV. Measured in bins of hadron transverse momentum (p_T) and rapidity (y) with respect to the beam axis, where p_T and y are measured in the CM frame. Contributions of charm hadrons from the decays of b-hadrons have been removed.

More…

Observation of double charm production involving open charm in pp collisions at $\sqrt{s}$=7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 06 (2012) 141, 2012.
Inspire Record 1113596 DOI 10.17182/hepdata.66915

The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.

1 data table match query

Normalized differential cross-section $\frac{d\ln\sigma\left(pp\rightarrow J/\psi D^+ X \right)}{d \left| \Delta \phi/\pi \right|}$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.


Version 2
Measurement of antiproton production in ${\rm p He}$ collisions at $\sqrt{s_{NN}}=110$ GeV

The LHCb collaboration Aaij, Roel ; Abellán Beteta, Carlos ; Adeva, Bernardo ; et al.
Phys.Rev.Lett. 121 (2018) 222001, 2018.
Inspire Record 1688924 DOI 10.17182/hepdata.84584

The cross-section for prompt antiproton production in collisions of protons with an energy of $6.5$ TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of $0.5\,nb^{-1}$. The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between $12$ and $110\,\mathrm{GeV/}c$, represent the first direct determination of the antiproton production cross-section in ${\rm p He}$ collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.

2 data tables match query

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.

Double-differential cross-section in antiproton momentum and transverse momentum for antiproton production in collisions of 6.5 TeV protons on He nuclei at rest. The antiproton momentum is defined in the laboratory frame. Results are averaged over the given kinematic range of each bin. The uncertainty is split into an uncertainty delta_uncorr, uncorrelated among the kinematic bins, and an uncertainty delta_corr, fully correlated among the kinematic bins. For both uncertainties, the systematic uncertainty, dominant for most bins, and the statistical uncertainty, are added in quadrature. The average value within each bin is also reported for the antiproton momentum, the transverse momentum, and x-Feynman xF=2 p_Z*/SQRT(S), where p_Z* is the longitudinal antiproton momentum in the center-of-mass system and SQRT(S) the nucleon-nucleon center-of-mass energy. These average values are obtained from simulation (based on EPOS LHC), to avoid biases from reconstruction effects and given the good agreement with data observed for the simulated kinematic spectra.


Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

1 data table match query

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.


Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

6 data tables match query

Beam-energy dependence of net-lambda cumulant ratios C2/C1 in most central (0-5%) and peripheral (50-60%). Values are shown with NBD, Poisson and UrQMD predictions.

Beam-energy dependence of net-lambda cumulant ratios C3/C2 in most central (0-5%) and peripheral (50-60%). Values are shown with NBD, Poisson and UrQMD predictions.

Beam-energy dependence of net-lambda, net-proton and net-kaon cumulant ratios C2/C1 in most central (0-5%) collision.

More…

Flow and interferometry results from Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV

The STAR collaboration Adam, J. ; Adamczyk, L. ; Adams, J.R. ; et al.
Phys.Rev.C 103 (2021) 034908, 2021.
Inspire Record 1809043 DOI 10.17182/hepdata.95903

The Beam Energy Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC) was extended to energies below $\sqrt{\textit{s}_{NN}}$ = 7.7 GeV in 2015 by successful implementation of the fixed-target mode of operation in the STAR (Solenoidal Track At RHIC) experiment. In the fixed-target mode, ions circulate in one ring of the collider and interact with a stationary target at the entrance of the STAR Time Projection Chamber. The first results for Au+Au collisions at $\sqrt{\textit{s}_{NN}}$ = 4.5 GeV are presented, including directed and elliptic flow of identified hadrons, and radii from pion femtoscopy. The proton flow and pion femtoscopy results agree quantitatively with earlier measurements by Alternating Gradient Synchrotron experiments at similar energies. This validates running the STAR experiment in the fixed-target configuration. Pion directed and elliptic flow are presented for the first time at this beam energy. Pion and proton elliptic flow show behavior which hints at constituent quark scaling, but large error bars preclude reliable conclusions. The ongoing second phase of BES (BES-II) will provide fixed-target data sets with 100 times more events at each of several energies down to $\sqrt{\textit{s}_{NN}}$ = 3.0 GeV.

1 data table match query

Beam energy dependence of the directed flow slope dv1=dy at midrapidity for baryons and mesons measured by STAR.