Measurement of jet-medium interactions via direct photon-hadron correlations in Au$+$Au and $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Acharya, U. ; Adare, A. ; Afanasiev, S. ; et al.
Phys.Rev.C 102 (2020) 054910, 2020.
Inspire Record 1798493 DOI 10.17182/hepdata.101752

We present direct photon-hadron correlations in 200 GeV/A Au+Au, d+Au, and p+p collisions, for direct photon pT from 5–12 GeV/c, collected by the PHENIX Collaboration in the years from 2006 to 2011. We observe no significant modification of jet fragmentation in d+Au collisions, indicating that cold nuclear matter effects are small or absent. Hadrons carrying a large fraction of the quark's momentum are suppressed in Au+Au compared to p+p and d+Au. As the momentum fraction decreases, the yield of hadrons in Au+Au increases to an excess over the yield in p+p collisions. The excess is at large angles and at low hadron pT and is most pronounced for hadrons associated with lower momentum direct photons. Comparison to theoretical calculations suggests that the hadron excess arises from medium response to energy deposited by jets.

14 data tables

Per-trigger yield of hadrons associated to direct photons in Au+Au collisions for direct photon $p_T$ 5-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Per-trigger yield of hadrons associated to direct photons in d+Au collisions for direct photon $p_T$ 7-9 GeV/$c$, compared with p+p baseline, in various $\xi$ bins.

Integrated away-side $\gamma_{dir}$-h per-trigger yields of Au+Au, d+Au, and p+p, as a function of $\xi$.

More…

Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 123 (2019) 022301, 2019.
Inspire Record 1672476 DOI 10.17182/hepdata.110699

The PHENIX collaboration presents first measurements of low-momentum ($0.4<p_T<3$ GeV/$c$) direct-photon yields from Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=39 and 62.4 GeV. For both beam energies the direct-photon yields are substantially enhanced with respect to expectations from prompt processes, similar to the yields observed in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200. Analyzing the photon yield as a function of the experimental observable $dN_{\rm ch}/d\eta$ reveals that the low-momentum ($>$1\,GeV/$c$) direct-photon yield $dN_{\gamma}^{\rm dir}/d\eta$ is a smooth function of $dN_{\rm ch}/d\eta$ and can be well described as proportional to $(dN_{\rm ch}/d\eta)^\alpha$ with $\alpha{\sim}$1.25. This new scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and Large Hadron Collider, for centrality selected samples, as well as for different, $A$$+$$A$ collision systems. At a given beam energy the scaling also holds for high $p_T$ ($>5$\,GeV/$c$) but when results from different collision energies are compared, an additional $\sqrt{s_{_{NN}}}$-dependent multiplicative factor is needed to describe the integrated-direct-photon yield.

21 data tables

Direct photon spectra(Physical Review C87, 054907 (2013)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 200 GeV.

Direct photon spectra(Physics Letters B94, 106 (1980)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 62.4 GeV.

Direct photon spectra(Nucl. Part. Phys. 23, A1 (1997) and Sov. J. Nucl. Phys. 51, 836 (1990)) normalized by $(dN_{ch}/d\eta)^{1.25}$ for in p+p at $\sqrt{s_{NN}}$= 63 GeV.

More…

Low-momentum direct photon measurement in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 98 (2018) 054902, 2018.
Inspire Record 1672473 DOI 10.17182/hepdata.143521

We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0\%--40\% most central events at midrapidity for Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$\pm$53(stat)$\pm$57(syst)~MeV/$c$ and 333$\pm$72(stat)$\pm$45(syst)~MeV/$c$ for minimum bias and 0\%--40\% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{\rm ch}/d\eta$ observed in Au$+$Au at the same collision energy.

2 data tables

Direct photon fraction measured with the virtual photon method for different systems in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.

The direct photon spectra for Minimum Bias and 0-40% centrality in $\sqrt{s_{NN}}$ = 200 GeV Cu+Cu collisions.


Measurement of two-particle correlations with respect to second- and third-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 99 (2019) 054903, 2019.
Inspire Record 1658594 DOI 10.17182/hepdata.115992

We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.

33 data tables

Higher-order flow harmonics for charged hadrons at midrapidity in Au$+$Au collisions at $\sqrt{s_{NN}}$ and their systematics: $v_2$, $v_3$, $v_4$, and $v_4\{\Psi_2\}$. The source of systematic uncertainties are difference among RXN event-planes, matching cut width for CNT hadron tracks, and difference between $v_n$ measured with RXN and BBC event planes .

Per-trigger yields $Y(\Delta\phi)$ of dihadrons pairs measured in Au$+$Au collisions at$\sqrt{s_{NN}}$ after subtracting the underlying event model with several $p_T$ selections and centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.

Per-trigger yields $Y(\Delta\phi)$ of dihadron pairs measured in Au$+$Au collisions after subtracting the underlying event-model with several $p_T$ selections of the trigger and associated particles ($p_T^{t,a}$ and several centralities. Systematic uncertainties are due to track matching and the $v_n$ and due to ZYAM.

More…

Measurements of $e^+e^-$ pairs from open heavy flavor in $p$+$p$ and $d$+$A$ collisions at $\sqrt{s_{NN}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 96 (2017) 024907, 2017.
Inspire Record 1512140 DOI 10.17182/hepdata.142395

We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $\sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $b\bar{b}$ and $c\bar{c}$ is separated by exploiting a double differential fit done simultaneously in dielectron invariant mass and $p_T$. We used three different event generators, {\sc pythia}, {\sc mc@nlo}, and {\sc powheg}, to simulate the $e^+e^-$ spectra from $c\bar{c}$ and $b\bar{b}$ production. The data can be well described by all three generators within the detector acceptance. However, when using the generators to extrapolate to $4\pi$, significant differences are observed for the total cross section. These difference are less pronounced for $b\bar{b}$ than for $c\bar{c}$. The same model dependence was observed in already published $d$+$A$ data. The $p$+$p$ data are also directly compared with $d$+$A$ data in mass and $p_T$, and within the statistical accuracy no nuclear modification is seen.

4 data tables

Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $c\bar{c}$ in the PHENIX acceptance to the number of $c\bar{c}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $c\bar{c}$ cross sections determined in this paper.

Step by step extrapolation from the number of $e^+e^-$ pairs for $m_{e^+e^-}$ > 1.16 GeV/$c^2$ from $b\bar{b}$ in the PHENIX acceptance to the number of $b\bar{b}$ pairs in 4$\pi$ for PYTHIA, MC@NLO, and POWHEG. Numbers are in units of pairs per event using the $b\bar{b}$ cross sections determined in this paper.

Summary of $c\bar{c}$ and $b\bar{b}$ cross sections measured in $p$+$p$ collisions using three different generators, PYTHIA, MC@NLO, and POWHEG.

More…

Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

2 data tables

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the conversion method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).

Direct photon $v_2$ and $v_3$ at midrapidity ($|\eta|$ < 0.35), for different centralities, measured with the calorimeter method. The event plane was determined with the reaction plane detector (1 < $|\eta|$ < 2.8).


Transverse energy production and charged-particle multiplicity at midrapidity in various systems from $\sqrt{s_{NN}}=7.7$ to 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024901, 2016.
Inspire Record 1394433 DOI 10.17182/hepdata.96601

Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.

28 data tables

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV

More…

Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$ from 62.4 GeV to 2.76 TeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 024911, 2016.
Inspire Record 1394434 DOI 10.17182/hepdata.142336

Measurements of the fractional momentum loss ($S_{\rm loss}\equiv{\delta}p_T/p_T$) of high-transverse-momentum-identified hadrons in heavy ion collisions are presented. Using $\pi^0$ in Au$+$Au and Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb$+$Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of $S_{\rm loss}$ as a function of a number of variables: the number of participants, $N_{\rm part}$, the number of quark participants, $N_{\rm qp}$, the charged-particle density, $dN_{\rm ch}/d\eta$, and the Bjorken energy density times the equilibration time, $\varepsilon_{\rm Bj}\tau_{0}$. We find that the $p_T$ where $S_{\rm loss}$ has its maximum, varies both with centrality and collision energy. Above the maximum, $S_{\rm loss}$ tends to follow a power-law function with all four scaling variables. The data at $\sqrt{s_{_{NN}}}$=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of $S_{\rm loss}$ with $dN_{\rm ch}/d\eta$ and $\varepsilon_{\rm Bj}\tau_{0}$, lending insight on the physics of parton energy loss.

14 data tables

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Au+Au collisions at RHIC from PHENIX.

Global variables for Cu+Cu collisions at RHIC from PHENIX.

More…

Measurements of elliptic and triangular flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 115 (2015) 142301, 2015.
Inspire Record 1384274 DOI 10.17182/hepdata.141742

We present the first measurement of elliptic ($v_2$) and triangular ($v_3$) flow in high-multiplicity $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in $^{3}$He$+$Au and in $p$$+$$p$ collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the $^{3}$He$+$Au system. The collective behavior is quantified in terms of elliptic $v_2$ and triangular $v_3$ anisotropy coefficients measured with respect to their corresponding event planes. The $v_2$ values are comparable to those previously measured in $d$$+$Au collisions at the same nucleon-nucleon center-of-mass energy. Comparison with various theoretical predictions are made, including to models where the hot spots created by the impact of the three $^{3}$He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

1 data table

Results for $v_2$ and $v_3$ as a function of $p_T$ for inclusive charged hadrons at midrapidity in 0-5% central $^3$He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.


Measurement of higher cumulants of net-charge multiplicity distributions in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 011901, 2016.
Inspire Record 1378005 DOI 10.17182/hepdata.146751

We report the measurement of cumulants ($C_n, n=1\ldots4$) of the net-charge distributions measured within pseudorapidity ($|\eta|<0.35$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=7.7-200$ GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. $C_1/C_2$, $C_3/C_1$) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of $C_1/C_2 = \mu/\sigma^2$ and $C_3/C_1 = S\sigma^3/\mu$ can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.

10 data tables

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

Efficiency corrected cumulants of net-charge distributions as a function of $\langle N_{part} \rangle$ from Au+Au collisions at different collision energies.

More…

Systematic study of charged-pion and kaon femtoscopy in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034914, 2015.
Inspire Record 1362210 DOI 10.17182/hepdata.143260

We present a systematic study of charged pion and kaon interferometry in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV. The kaon mean source radii are found to be larger than pion radii in the outward and longitudinal directions for the same transverse mass; this difference increases for more central collisions. The azimuthal-angle dependence of the radii was measured with respect to the second-order event plane and similar oscillations of the source radii were found for pions and kaons. Hydrodynamic models qualitatively describe the similar oscillations of the mean source radii for pions and kaons, but they do not fully describe the transverse-mass dependence of the oscillations.

12 data tables

HBT parameters of positive pion pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.

HBT parameters of negative pion pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.

HBT parameters of charge-combined kaon pairs, shown as value $\pm$ statistical uncertainty [absolute value] $\pm$ systematic uncertainty [%] for the centrality bins shown in Fig. 3.

More…

Measurement of the higher-order anisotropic flow coefficients for identified hadrons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 93 (2016) 051902, 2016.
Inspire Record 1332239 DOI 10.17182/hepdata.110967

New PHENIX measurements of the anisotropic flow coefficients $v_2\{\Psi_2\}$, $v_3\{\Psi_3\}$, $v_4\{\Psi_4\}$ and $v_4\{\Psi_2\}$ for identified particles ($\pi^{\pm}$, $K^{\pm}$, and $p+\bar{p}$) obtained relative to the event planes $\Psi_n$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV are presented as functions of collision centrality and particle transverse momenta $p_T$. The $v_n$ coefficients show characteristic patterns consistent with hydrodynamical expansion of the matter produced in the collisions. For each harmonic $n$, a modified valence quark number $n_q$ scaling plotting $v_n/(n_q)^{n/2}$ versus ${\rm KE}_T/n_q$ is observed to yield a single curve for all the measured particle species for a broad range of transverse kinetic energies ${\rm KE}_T$. A simultaneous blast wave model fit to the observed particle spectra and $v_n(p_T)$ coefficients identifies spatial eccentricities $s_n$ at freeze-out, which are much smaller than the initial-state geometric values.

40 data tables

Azimuthal anisotropy $v_n$ via the event-plane method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_2$ and $v_3$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

Azimuthal anisotropy $v_4$ via the two-particle correlation method for charge-combined $\pi^{\pm}$ in 0%–50% central Au+Au collisions at $\sqrt{s_{NN}} =$ 200 GeV.

More…

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

75 data tables

$v_2$ for inclusive charged hadrons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

$v_2$ for inclusive charged hadrons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

$v_2$ for inclusive charged hadrons in Au+Au at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Closing the Door for Dark Photons as the Explanation for the Muon g-2 Anomaly

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 031901, 2015.
Inspire Record 1313628 DOI 10.17182/hepdata.143253

The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_\mu$ deviates from SM calculations by 3.6$\sigma$. Several theoretical models attribute this to the existence of a "dark photon," an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $\pi^0,\eta \rightarrow \gamma e^+e^-$ decays and obtained upper limits of $\mathcal{O}(2\times10^{-6})$ on $U$-$\gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$\gamma$ mixing parameter space that can explain the $(g-2)_\mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.

5 data tables

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

More…

Centrality dependence of low-momentum direct-photon production in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 064904, 2015.
Inspire Record 1296308 DOI 10.17182/hepdata.142985

The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon conversions to $e^+e^-$ pairs and an improved technique is applied that minimizes the systematic uncertainties that usually limit direct photon measurements, in particular at low $p_T$. We find an excess of direct photons above the $N_{\rm coll}$-scaled yield measured in $p$$+$$p$ collisions. This excess yield is well described by an exponential distribution with an inverse slope of about 240 MeV/$c$ in the $p_T$ range from 0.6--2.0 GeV/$c$. While the shape of the $p_T$ distribution is independent of centrality within the experimental uncertainties, the yield increases rapidly with increasing centrality, scaling approximately with $N_{\rm part}^\alpha$, where $\alpha=1.48{\pm}0.08({\rm stat}){\pm}0.04({\rm syst})$.

6 data tables

Ratio $R_{\gamma}$ as function of photon $p_T$ from the 2007 and 2010 data sets in minimum-bias Au+Au collisions, and the $R_{\gamma}$ in the combined 2007+2010 measurement.

Ratio $R_{\gamma}$ as function of photon $p_T$ for the combined 2007 and 2010 data sets in different centrality bins.

Direct photon $p_T$ spectra in different centrality bins.

More…

Measurement of $\Upsilon$(1S+2S+3S) production in $p$$+$$p$ and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 024913, 2015.
Inspire Record 1289084 DOI 10.17182/hepdata.141940

Measurements of bottomonium production in heavy ion and $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) are presented. The inclusive yield of the three $\Upsilon$ states, $\Upsilon(1S+2S+3S)$, was measured in the PHENIX experiment via electron-positron decay pairs at midrapidity for Au$+$Au and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. The $\Upsilon(1S+2S+3S)\rightarrow e^+e^-$ differential cross section at midrapidity was found to be $B_{\rm ee} d\sigma/dy =$ 108 $\pm$ 38 (stat) $\pm$ 15(syst) $\pm$ 11 (luminosity) pb in $p$$+$$p$ collisions. The nuclear modification factor in the 30\% most central Au$+$Au collisions indicates a suppression of the total $\Upsilon$ state yield relative to the extrapolation from $p$$+$$p$ collision data. The suppression is consistent with measurements made by STAR at RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.

4 data tables

Summary of the measured $\Upsilon$ invariant multiplicities, $BdN/dy$, for one $p + p$ three Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

Summary of the measured $\Upsilon$ nuclear modification factors, $R_{AA}$, for Au + Au data sets.

More…

Azimuthal-angle dependence of charged-pion-interferometry measurements with respect to 2$^{\rm nd}$- and $3^{\rm rd}$-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 112 (2014) 222301, 2014.
Inspire Record 1279634 DOI 10.17182/hepdata.141895

Charged-pion-interferometry measurements were made with respect to the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event plane for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. A strong azimuthal-angle dependence of the extracted Gaussian-source radii was observed with respect to both the 2$^{\rm nd}$- and 3$^{\rm rd}$-order event planes. The results for the 2$^{\rm nd}$-order dependence indicate that the initial eccentricity is reduced during the medium evolution, but not reversed in the final state, which is consistent with previous results. In contrast, the results for the 3$^{\rm rd}$-order dependence indicate that the initial triangular shape is significantly reduced and potentially reversed by the end of the medium evolution, and that the 3$^{\rm rd}$-order oscillations are largely dominated by the dynamical effects from triangular flow.

5 data tables

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The azimuthal dependence of $R^2_s$, $R^2_o$, $R^2_l$, and $R^2_{os}$ for charged pions in 0.2 < $k_T$ < 2.0 GeV/$c$ with respect to second-(a)-(d) and third-order (e)-(h) event plane in Au + Au collisions at $\sqrt{S_{NN}}$ 200 GeV.

The solid points are the oscillation amplitudes relative to the average of HBT radii for four different combinations (a) $2R^{2}_{s,n}/R^{2}_{s,0}$, (b) $2R^{2}_{os,n}/R^{2}_{s,0}$, (c) $2R^{2}_{o,n}/R^{2}_{o,0}$, and (d) $2R^{2}_{o,n}/R^{2}_{s,0}$ as a function of initial spatial anisotropy ($\varepsilon_{n}$), which are calculated using the Glauber model.

More…

Transverse-energy distributions at midrapidity in $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$--200~GeV and implications for particle-production models

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 044905, 2014.
Inspire Record 1273625 DOI 10.17182/hepdata.63512

Measurements of the midrapidity transverse energy distribution, $d\Et/d\eta$, are presented for $p$$+$$p$, $d$$+$Au, and Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV and additionally for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 130 GeV. The $d\Et/d\eta$ distributions are first compared with the number of nucleon participants $N_{\rm part}$, number of binary collisions $N_{\rm coll}$, and number of constituent-quark participants $N_{qp}$ calculated from a Glauber model based on the nuclear geometry. For Au$+$Au, $\mean{d\Et/d\eta}/N_{\rm part}$ increases with $N_{\rm part}$, while $\mean{d\Et/d\eta}/N_{qp}$ is approximately constant for all three energies. This indicates that the two component ansatz, $dE_{T}/d\eta \propto (1-x) N_{\rm part}/2 + x N_{\rm coll}$, which has been used to represent $E_T$ distributions, is simply a proxy for $N_{qp}$, and that the $N_{\rm coll}$ term does not represent a hard-scattering component in $E_T$ distributions. The $dE_{T}/d\eta$ distributions of Au$+$Au and $d$$+$Au are then calculated from the measured $p$$+$$p$ $E_T$ distribution using two models that both reproduce the Au$+$Au data. However, while the number-of-constituent-quark-participant model agrees well with the $d$$+$Au data, the additive-quark model does not.

43 data tables

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

Et EMC distributions for sqrt(sNN) = 62.4 GeV Au+Au collisions shown in 5% wide centrality bins.

More…

Measurement of transverse-single-spin asymmetries for midrapidity and forward-rapidity production of hadrons in polarized p+p collisions at $\sqrt{s}=$200 and 62.4 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 90 (2014) 012006, 2014.
Inspire Record 1268155 DOI 10.17182/hepdata.143306

Measurements of transverse-single-spin asymmetries ($A_{N}$) in $p$$+$$p$ collisions at $\sqrt{s}=$62.4 and 200 GeV with the PHENIX detector at RHIC are presented. At midrapidity, $A_{N}$ is measured for neutral pion and eta mesons reconstructed from diphoton decay, and at forward rapidities, neutral pions are measured using both diphotons and electromagnetic clusters. The neutral-pion measurement of $A_{N}$ at midrapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, where the valence quark distributions are probed, the data exhibit sizable asymmetries. In comparison with previous measurements in this kinematic region, the new data extend the kinematic coverage in $\sqrt{s}$ and $p_T$, and it is found that the asymmetries depend only weakly on $\sqrt{s}$. The origin of the forward $A_{N}$ is presently not understood quantitatively. The extended reach to higher $p_T$ probes the transition between transverse momentum dependent effects at low $p_T$ and multi-parton dynamics at high $p_T$.

13 data tables

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.1 < |\eta| < 3.5$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s} = 62.4$ GeV as a function of $x_F$ in pseudorapidity $3.5 < |\eta| < 3.8$, with statistical and systematic uncertainties.

Neutral pion $A_N$ at $\sqrt{s}$ = 62.4 GeV as function of transverse momentum $p_T$.

More…

Heavy-flavor electron-muon correlations in $p+p$ and $d$+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 89 (2014) 034915, 2014.
Inspire Record 1263517 DOI 10.17182/hepdata.142078

We report $e^\pm-\mu^\mp$ pair yield from charm decay measured between midrapidity electrons ($|\eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<\eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $\Delta\phi$ in both $p$$+$$p$ and in $d$+Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Comparing the $p$$+$$p$ results with several different models, we find the results are consistent with a total charm cross section $\sigma_{c\bar{c}} =$ 538 $\pm$ 46 (stat) $\pm$ 197 (data syst) $\pm$ 174 (model syst) $\mu$b. These generators also indicate that the back-to-back peak at $\Delta\phi = \pi$ is dominantly from the leading order contributions (gluon fusion), while higher order processes (flavor excitation and gluon splitting) contribute to the yield at all $\Delta\phi$. We observe a suppression in the pair yield per collision in $d$+Au. We find the pair yield suppression factor for $2.7<\Delta\phi<3.2$ rad is $J_{dA}$ = 0.433 $\pm$ 0.087 (stat) $\pm$ 0.135 (syst), indicating cold nuclear matter modification of $c\bar{c}$ pairs.

4 data tables

The fully-corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $p$+$p$.

The fully corrected like-sign-subtracted heavy flavor $e$-$\mu$ pair yield in $d$+Au.

$J_{dA}$ plotted as a function of $\Delta\phi$.

More…

System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at $\sqrt{s_{_{NN}}}$=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 90 (2014) 034903, 2014.
Inspire Record 1262739 DOI 10.17182/hepdata.143308

The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}$=200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu$+$Cu collisions an enhanced production of electrons is observed relative to $p$$+$$p$ collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/$c$ the nuclear modification factor is $R_{AA}$$\sim$1.4. As the system size increases to more central Cu$+$Cu collisions, the enhancement gradually disappears and turns into a suppression. For $p_T>3$ GeV/$c$, the suppression reaches $R_{AA}$$\sim$0.8 in the most central collisions. The $p_T$ and centrality dependence of $R_{AA}$ in Cu$+$Cu collisions agree quantitatively with $R_{AA}$ in $d+$Au and Au$+$Au collisions, if compared at similar number of participating nucleons $\langle N_{\rm part} \rangle$.

16 data tables

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

The $p_T$ spectra of electrons from the decays of open heavy flavor hadrons produced in Cu+Cu collisions, separated by centrality.

More…

Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 88 (2013) 064910, 2013.
Inspire Record 1254476 DOI 10.17182/hepdata.96550

The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are found to be consistent between the two meson species over the measured p_T range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is systematically larger in central collisions, which may reflect the combined effects of fluctuations in the initial collision geometry and finite viscosity in the evolving medium.

10 data tables

$\eta$ meson $v_2, 0-20\%$ centrality

$\eta$ meson $v_2, 20-60\%$ centrality

$\pi^0$ meson $v_4, 0-20\%$ centrality

More…

Spectra and ratios of identified particles in Au+Au and d+Au collisions at sqrt(s_{NN})=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 88 (2013) 024906, 2013.
Inspire Record 1227971 DOI 10.17182/hepdata.96572

The transverse momentum (p_T) spectra and ratios of identified charged hadrons (\pi^+/-, K^+/-, p, p^bar) produced in sqrt(s_NN)=200 GeV Au+Au and d+Au collisions are reported in five different centrality classes for each collision species. The measurements of pions and protons are reported up to p_T=6 GeV/c (5 GeV/c), and the measurements of kaons are reported up to p_T=4 GeV/c (3.5 GeV/c) in Au+Au (d+Au) collisions. In the intermediate p_T region, between 2--5 GeV/c, a significant enhancement of baryon to meson ratios compared to those measured in p+p collisions is observed. This enhancement is present in both Au+Au and d+Au collisions, and increases as the collisions become more central. We compare a class of peripheral Au+Au collisions with a class of central d+Au collisions which have a comparable number of participating nucleons and binary nucleon-nucleon collisions. The p_T dependent particle ratios for these classes display a remarkable similarity, which is then discussed.

28 data tables

kaon AuAu Invariant yields versus $p_T$

kaon dAu Invariant yields versus $p_T$

pion AuAu Invariant yields versus $p_T$

More…

Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 111 (2013) 032301, 2013.
Inspire Record 1207323 DOI 10.17182/hepdata.95877

The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.

5 data tables

Direct photon-hadron pair per-trigger yields vs Delta-phi (Au+Au and p+p)

Integrated per-trigger yields and I_AA vs xi

Integrated per-trigger yields and I_AA vs xi

More…

Inclusive cross section and single-transverse-spin asymmetry for very forward neutron production in polarized p+p collisions at sqrt(s)=200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.D 88 (2013) 032006, 2013.
Inspire Record 1185577 DOI 10.17182/hepdata.143074

The energy dependence of the single-transverse-spin asymmetry, A_N, and the cross section for neutron production at very forward angles were measured in the PHENIX experiment at RHIC for polarized p+p collisions at sqrt(s)=200 GeV. The neutrons were observed in forward detectors covering an angular range of up to 2.2 mrad. We report results for neutrons with momentum fraction of x_F=0.45 to 1.0. The energy dependence of the measured cross sections were consistent with x_F scaling, compared to measurements by an ISR experiment which measured neutron production in unpolarized p+p collisions at sqrt(s)=30.6--62.7 GeV. The cross sections for large x_F neutron production for p+p collisions, as well as those in e+p collisions measured at HERA, are described by a pion exchange mechanism. The observed forward neutron asymmetries were large, reaching A_N=-0.08+/-0.02 for x_F=0.8; the measured backward asymmetries, for negative x_F, were consistent with zero. The observed asymmetry for forward neutron production is discussed within the pion exchange framework, with interference between the spin-flip amplitude due to the pion exchange and nonflip amplitudes from all Reggeon exchanges. Within the pion exchange description, the measured neutron asymmetry is sensitive to the contribution of other Reggeon exchanges even for small amplitudes.

3 data tables

The cross section results for forward neutron production in $p$+$p$ collisions at $\sqrt{s}$ = 200 GeV are shown. Two different forms, exponential and Gaussian, were used for the $p_T$ distribution. The integrated $p_T$ region for each bin is 0 < $p_T$ < 0.11$x_F$ GeV/$c$.

The $x_F$ dependence of $A_N$ for neutron production in the ZDC trigger sample.

The $x_F$ dependence of $A_N$ for neutron production for the ZDC$\otimes$BBC trigger sample.