Showing 10 of 73 results
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
Normalised differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Normalised double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
The $\chi^2$ and NDF for measured absolute differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Absolute differential cross-section as a function of $n_\text{ch}$.
Absolute differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $n_\text{ch} < 20$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 20 \leq n_\text{ch} < 40$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 40 \leq n_\text{ch} < 60$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n_\text{ch}$ in $ 60 \leq n_\text{ch} < 80$.
Absolute double-differential cross-section as a function of $\sum_{n_{\text{ch}}} p_{\text{T}}$ vs. $n\text{ch}$ in $ n_\text{ch} \geq 80$.
This paper presents measurements of top-antitop quark pair ($t\bar{t}$) production in association with additional $b$-jets. The analysis utilises 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. Fiducial cross-sections are extracted in a final state featuring one electron and one muon, with at least three or four $b$-jets. Results are presented at the particle level for both integrated cross-sections and normalised differential cross-sections, as functions of global event properties, jet kinematics, and $b$-jet pair properties. Observable quantities characterising $b$-jets originating from the top quark decay and additional $b$-jets are also measured at the particle level, after correcting for detector effects. The measured integrated fiducial cross-sections are consistent with $t\bar{t}b\bar{b}$ predictions from various next-to-leading-order matrix element calculations matched to a parton shower within the uncertainties of the predictions. State-of-the-art theoretical predictions are compared with the differential measurements; none of them simultaneously describes all observables. Differences between any two predictions are smaller than the measurement uncertainties for most observables.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least two $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least three $b$-jets as a function of the number of $b$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{3})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{4})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $p_{\text{T}}(bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{all}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu b_{1}b_{2})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $m(e\mu bb^{\text{top}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $H_{\text{T}}^{\text{had}}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\text{min}\Delta R(bb)$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta R_{\text{avg}}^{bb}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $\Delta\eta_{\text{max}}^{jj}$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of the number of $l/c$-jets compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $|\eta(l/c\text{-jet}_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets and at least one $l/c$-jet as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at leastfour $b$-jets as a function of $|\eta(b_{2}^{\text{top}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{3})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{4})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{1}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
Data bootstraps post unfolding for the normalised differential cross-section in the phase space with at least four $b$-jets as a function of $|\eta(b_{2}^{\text{add}})|$ compared with predictions. The replicas are obtained by reweighting each observed data event by a random integer generated according to Poisson statistics, using the BootstrapGenerator software package (https://gitlab.cern.ch/atlas-physics/sm/StandardModelTools_BootstrapGenerator/BootstrapGenerator), which implements a technique described in ATL-PHYS-PUB-2021-011 (https://cds.cern.ch/record/2759945). The ATLAS event number and run number of each event are used as seed to uniquely but reproducibly initialise the random number generator for each event. The last bin contains the overflow.
The measured normalised differential cross-section as a function of $N_{b-\text{jets}}$ in the $e\mu+\geq2b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{had}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $H_{\text{T}}^{\text{all}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R_{\text{avg}}^{bb}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta\eta_{\text{max}}^{jj}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{4})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{2}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{top}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{3})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{1}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{4})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(b_{2}^{\text{add}})|$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(e\mu bb^{\text{top}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $m(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(bb^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\text{min}\Delta R(bb)$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(b_{1}b_{2})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $N_{l/c-\text{jets}}$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the $e\mu+\geq4b$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $|\eta(l/c\text{-jet}_{1})|$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The measured normalised differential cross-section as a function of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the $e\mu+\geq4b+\geq1l/c-\text{jet}$ phase space. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{b-\text{jets}}$ in the phase space with at least two b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{had}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $H_{\text{T}}^{\text{all}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R_{\text{avg}}^{bb}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta\eta_{\text{max}}^{jj}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{4})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{2}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{top}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{3})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{1}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{4})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(b_{2}^{\text{add}})|$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(e\mu bb^{\text{top}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{min}\Delta R})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $m(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(bb^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\text{min}\Delta R(bb)$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(b_{1}b_{2})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $N_{l/c-\text{jets}}$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu b_{1}b_{2},b_{3})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, b_{1}^{\text{add}})$ in the phase space with at least four b-jets. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $\Delta R(e\mu bb^{\text{top}}, l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1}) - p_{\text{T}}(b_{1}^{\text{add}})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $|\eta(l/c\text{-jet}_{1})|$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
The correlation matrix for the measured normalised differential cross-section in terms of $p_{\text{T}}(l/c\text{-jet}_{1})$ in the phase space with at least four b-jets and at least one $l/c$-jet. The overflow is included in the last bin.
Differential cross-section measurements of $Z\gamma$ production in association with hadronic jets are presented, using the full 139 fb$^{-1}$ dataset of $\sqrt{s}=13$ TeV proton-proton collisions collected by the ATLAS detector during Run 2 of the LHC. Distributions are measured using events in which the $Z$ boson decays leptonically and the photon is usually radiated from an initial-state quark. Measurements are made in both one and two observables, including those sensitive to the hard scattering in the event and others which probe additional soft and collinear radiation. Different Standard Model predictions, from both parton-shower Monte Carlo simulation and fixed-order QCD calculations, are compared with the measurements. In general, good agreement is observed between data and predictions from MATRIX and MiNNLO$_\text{PS}$, as well as next-to-leading-order predictions from MadGraph5_aMC@NLO and Sherpa.
Measured differential cross section as a function of observable $ p_{T}^{ll}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll} + p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ \Delta R (l,l)$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ N_{jets}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{Jet1}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{Jet2}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{Jet2}/p_{T}^{Jet1}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ m_{jj}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ m_{ll\gamma j}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ H_{T}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{\gamma} / \sqrt{H_{T}}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ \Delta \phi (Jet,\gamma)$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma j}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ \phi_{CS}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ \cos \theta_{CS}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma} / m_{ll\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma} / m_{ll\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma} / m_{ll\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll} - p_{T}^{\gamma}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma j}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma j}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Measured differential cross section as a function of observable $ p_{T}^{ll\gamma j}$. Error on the measured cross-section include all the systematic uncertainties. SM predictions are produced with the event generators at particle level: Sherpa 2.2.4, Sherpa 2.2.11, MadGraph5_aMC@NLO, and MiNNLO$_{PS}$. Fixed order calculations results use MATRIX NNLO. Error represent statistical uncertainty and theoretical uncertainty (PDF and Scale variations).
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{\gamma} / \sqrt{H_{T}}$ (Fig. 8 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ H_{T}$ (Fig. 8 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ \Delta \phi (Jet,\gamma)$ (Fig. 8 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ \Delta R (l,l)$ (Fig. 5 (d))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll} - p_{T}^{\gamma}$ (Fig. 5 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll} - p_{T}^{\gamma} \textrm{ in bin } p_{T}^{ll} + p_{T}^{\gamma} < 200 GeV$ (Fig. 11 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll} - p_{T}^{\gamma} \textrm{ in bin } 200 GeV < p_{T}^{ll} + p_{T}^{\gamma} < 300 GeV$ (Fig. 11 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll} - p_{T}^{\gamma} \textrm{ in bin } p_{T}^{ll} + p_{T}^{\gamma} > 300 GeV$ (Fig. 11 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ m_{jj}$ (Fig. 7 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ m_{ll\gamma j}$ (Fig. 7 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ N_{jets}$ (Fig. 6 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{Jet1}$ (Fig. 6 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{Jet2}$ (Fig. 6 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{Jet2}/p_{T}^{Jet1}$ (Fig. 6 (d))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll}$ (Fig. 5 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma j}$ (Fig. 8 (d))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma j} \textrm{ in bin } p_{T}^{ll\gamma} < 50 GeV$ (Fig. 12 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma j} \textrm{ in bin } 50 GeV < p_{T}^{ll\gamma} < 75 GeV$ (Fig. 12 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma j} \textrm{ in bin } p_{T}^{ll\gamma} > 75 GeV$ (Fig. 12 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma} / m_{ll\gamma} \textrm{ in bin } 125 GeV < m_{ll\gamma} < 200 GeV$ (Fig. 10 (a))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma} / m_{ll\gamma} \textrm{ in bin } 200 GeV < m_{ll\gamma} < 300 GeV$ (Fig. 10 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll\gamma} / m_{ll\gamma} \textrm{ in bin } m_{ll\gamma} > 300 GeV$ (Fig. 10 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ p_{T}^{ll} + p_{T}^{\gamma}$ (Fig. 5 (c))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ \cos \theta_{CS}$ (Fig. 9 (b))
Correlation matrix of the statistical uncertainties in the measured fiducial cross section for the observable $ \phi_{CS}$ (Fig. 9 (a))
Properties of the underlying-event in $pp$ interactions are investigated primarily via the strange hadrons $K_{S}^{0}$, $\Lambda$ and $\bar\Lambda$, as reconstructed using the ATLAS detector at the LHC in minimum-bias $pp$ collision data at $\sqrt{s} = 13$ TeV. The hadrons are reconstructed via the identification of the displaced two-particle vertices corresponding to the decay modes $K_{S}^{0}\rightarrow\pi^+\pi^-$, $\Lambda\rightarrow\pi^-p$ and $\bar\Lambda\rightarrow\pi^+\bar{p}$. These are used in the construction of underlying-event observables in azimuthal regions computed relative to the leading charged-particle jet in the event. None of the hadronisation and underlying-event physics models considered can describe the data over the full kinematic range considered. Events with a leading charged-particle jet in the range of $10 < p_T \leq 40$ GeV are studied using the number of prompt charged particles in the transverse region. The ratio $N(\Lambda + \bar\Lambda)/N(K_{S}^{0})$ as a function of the number of such charged particles varies only slightly over this range. This disagrees with the expectations of some of the considered Monte Carlo models.
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. leading-jet $p_{T}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. leading-jet $p_{T}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. leading-jet $p_{T}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. leading-jet $p_{T}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $K^{0}_{S}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $K^{0}_{S}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean multiplicity of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the away region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the towards region vs. $N_\textrm{ch,trans}$
Mean scalar sum-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ per unit $(\eta, \phi)$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to prompt charged particles in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the multiplicity of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the away region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the towards region vs. $N_\textrm{ch,trans}$
Ratio of the scalar sum-pt of $\Lambda$ and $\bar{\Lambda}$ to $K^{0}_{S}$ in the transverse region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the away region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the towards region vs. $N_\textrm{ch,trans}$
Mean-$p_{T}$ of $\Lambda$ and $\bar{\Lambda}$ in the transverse region vs. $N_\textrm{ch,trans}$
A study of the charge conjugation and parity ($CP$) properties of the interaction between the Higgs boson and $\tau$-leptons is presented. The study is based on a measurement of $CP$-sensitive angular observables defined by the visible decay products of $\tau$-lepton decays, where at least one hadronic decay is required. The analysis uses 139 fb$^{-1}$ of proton$-$proton collision data recorded at a centre-of-mass energy of $\sqrt{s}= 13$ TeV with the ATLAS detector at the Large Hadron Collider. Contributions from $CP$-violating interactions between the Higgs boson and $\tau$-leptons are described by a single mixing angle parameter $\phi_{\tau}$ in the generalised Yukawa interaction. Without assuming the Standard Model hypothesis for the $H\rightarrow\tau\tau$ signal strength, the mixing angle $\phi_{\tau}$ is measured to be $9^{\circ} \pm 16^{\circ}$, with an expected value of $0^{\circ} \pm 28^{\circ}$ at the 68% confidence level. The pure $CP$-odd hypothesis is disfavoured at a level of 3.4 standard deviations. The results are compatible with the predictions for the Higgs boson in the Standard Model.
A search for the leptonic charge asymmetry ($A_\text{c}^{\ell}$) of top-quark$-$antiquark pair production in association with a $W$ boson ($t\bar{t}W$) is presented. The search is performed using final states with exactly three charged light leptons (electrons or muons) and is based on $\sqrt{s} = 13$ TeV proton$-$proton collision data collected with the ATLAS detector at the Large Hadron Collider at CERN during the years 2015$-$2018, corresponding to an integrated luminosity of 139 fb$^{-1}$. A profile-likelihood fit to the event yields in multiple regions corresponding to positive and negative differences between the pseudorapidities of the charged leptons from top-quark and top-antiquark decays is used to extract the charge asymmetry. At reconstruction level, the asymmetry is found to be $-0.123 \pm 0.136$ (stat.) $\pm \, 0.051$ (syst.). An unfolding procedure is applied to convert the result at reconstruction level into a charge-asymmetry value in a fiducial volume at particle level with the result of $-0.112 \pm 0.170$ (stat.) $\pm \, 0.054$ (syst.). The Standard Model expectations for these two observables are calculated using Monte Carlo simulations with next-to-leading-order plus parton shower precision in quantum chromodynamics and including next-to-leading-order electroweak corrections. They are $-0.084 \, ^{+0.005}_{-0.003}$ (scale) $\pm\, 0.006$ (MC stat.) and $-0.063 \, ^{+0.007}_{-0.004}$ (scale) $\pm\, 0.004$ (MC stat.) respectively, and in agreement with the measurements.
Measured values of the leptonic charge asymmetry ($A_c^{\ell}$) in ttW production in the three lepton channel. Results are given at reconstruction level and at particle level. Expected values are obtained using the Sherpa MC generator.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
Figure 6(left) of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 1 b$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 6(right) of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 2 b$-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 7 of the article. Measured fiducial cross sections for events with $Z \left( \rightarrow \ell \ell \right) \geq 1 c$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 8(left) of the article. Differential fiducial cross-section of the Z boson $p_T$ in events with $Z \left( \rightarrow \ell\ell \right) + 1 b$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 8(right) of the article. Differential fiducial cross-section of the leading $b$-jet $p_T$ in events with $Z \left( \rightarrow \ell\ell \right) + 1 b$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 9 of the article. Differential fiducial cross-section of the $\Delta R$ between the $Z$ boson and the leading $b$-jet in events with $Z \left( \rightarrow \ell\ell \right) + 1 b$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 10(left) of the article. Differential fiducial cross-section of the $\Delta \phi$ between the leading and sub-leading $b$-jets in events with $Z \left( \rightarrow \ell\ell \right) + 2 b$-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 10(right) of the article. Differential fiducial cross-section of the invariant mass of the leading and sub-leading $b$-jets in events with $Z \left( \rightarrow \ell\ell \right) + 2 b$-jets. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 11(left) of the article. Differential fiducial cross-section of the Z boson $p_T$ in events with $Z \left( \rightarrow \ell\ell \right) + 1 c$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 11(right) of the article. Differential fiducial cross-section of the leading $c$-jet $p_T$ in events with $Z \left( \rightarrow \ell\ell ight) + 1 c$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Figure 12 of the article. Differential fiducial cross-section of the leading $c$-jet $x_F$ in events with $Z \left( \rightarrow \ell\ell \right) + 1 c$-jet. The thin inner band corresponds to the statistical uncertainty of the data, and the outer band to statistical and systematic uncertainties of the data, added in quadrature.
Inclusive and differential cross-sections are measured at particle level for the associated production of a top quark pair and a photon ($t\bar{t}\gamma$). The analysis is performed using an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector. The measurements are performed in the single-lepton and dilepton top quark pair decay channels focusing on $t\bar{t}\gamma$ topologies where the photon is radiated from an initial-state parton or one of the top quarks. The absolute and normalised differential cross-sections are measured for several variables characterising the photon, lepton and jet kinematics as well as the angular separation between those objects. The observables are found to be in good agreement with the Monte Carlo predictions. The photon transverse momentum differential distribution is used to set limits on effective field theory parameters related to the electroweak dipole moments of the top quark. The combined limits using the photon and the $Z$ boson transverse momentum measured in $t\bar{t}$ production in associations with a $Z$ boson are also set.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,l)$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,l)$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l)_{min}$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l)_{min}$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in the combined fiducial phase space of the single-lepton and dilepton channels as a function of the photon $p_T$. The last bin of the distributions includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in the combined fiducial phase space of the single-lepton and dilepton channels as a function of the photon $p_T$. The last bin of the distributions includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in the combined fiducial phase space of the single-lepton and dilepton channels as a function of the photon $|\eta|$.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in the combined fiducial phase space of the single-lepton and dilepton channels as a function of the photon $|\eta|$.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $|\eta(\gamma)|$.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $|\eta(\gamma)|$.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,l)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(\gamma,l)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $|\Delta \eta(l,l)|$ . The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $|\Delta \eta(l,l)|$ . The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta \phi(l,l)$ . The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta \phi(l,l)$ . The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $p_T(l,l)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $p_T(l,l)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l_1)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l_1)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l_2)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l_2)$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $|\eta(\gamma)|$.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $|\eta(\gamma)|$.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the single-lepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $|\eta(\gamma)|$.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $|\eta(\gamma)|$.
Absolute $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Normalised $t\bar{t}\gamma$ production differential cross-sections measured in fiducial phase space in the dilepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $p_T(\gamma)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $|\eta(\gamma)|$.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $|\eta(\gamma)|$.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the single-lepton channel as a function of the $p_T(j_1)$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,b)_{min}$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l)_{min}$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(\gamma,l)_{min}$. The last bin of the distribution includes the overflow events.
Absolute differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Normalised differential cross-section of the total $t\bar{t}\gamma$ production and decay measured in fiducial phase space in the dilepton channel as a function of the $\Delta R(l,j)_{min}$. The last bin of the distribution includes the overflow events.
Measurements of both the inclusive and differential production cross sections of a top-quark-top-antiquark pair in association with a $Z$ boson ($t\bar{t}Z$) are presented. Final states with two, three or four isolated leptons (electrons or muons) are targeted. The measurements use the data recorded by the ATLAS detector in $pp$ collisions at $\sqrt{s}=13$ TeV at the Large Hadron Collider during the years 2015-2018, corresponding to an integrated luminosity of $140$ fb$^{-1}$. The inclusive cross section is measured to be $\sigma_{t\bar{t}Z}= 0.86 \pm 0.04~\mathrm{(stat.)} \pm 0.04~\mathrm{(syst.)}~$pb and found to be in agreement with the most advanced Standard Model predictions. The differential measurements are presented as a function of a number of observables that probe the kinematics of the $t\bar{t}Z$ system. Both the absolute and normalised differential cross-section measurements are performed at particle level and parton level for specific fiducial volumes, and are compared with NLO+NNLL theoretical predictions. The results are interpreted in the framework of Standard Model effective field theory and used to set limits on a large number of dimension-6 operators involving the top quark. The first measurement of spin correlations in $t\bar{t}Z$ events is presented: the results are in agreement with the Standard Model expectations, and the null hypothesis of no spin correlations is disfavoured with a significance of $1.8$ standard deviations.
Pre-fit distribution of the number of $b$-jets in 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j1b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-5j2b, this distribution is not used in the fit.
Pre-fit distribution of the DNN output 2L-$e\mu$-6j2b, this distribution is not used in the fit.
Pre-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region.
Pre-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region.
Pre-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region.
Post-fit distribution of jet multiplicity in CR-$t\bar{t}$-e region
Post-fit distribution of loose lepton transverse momentum in CR-$t\bar{t}$-$\mu$ region
Post-fit distribution of the transverse mass of the trailing lepton and the missing transverse momentum in CR-Z-e region
Post-fit distribution of NN output in SR-2L-5j2b region.
Post-fit distribution of NN output in SR-2L-6j1b region.
Post-fit distribution of NN output in SR-2L-6j2b region.
Post-fit distribution of DNN-$t\bar{t}Z$ output in 3L-SR-ttZ region.
Post-fit distribution of DNN-$t\bar{t}Z$ outputt in 3L-SR-tZq region.
Post fit events yields in 3L-SR-WZ region.
Post-fit distribution of NN output in 4L-SR-SF region.
Post-fit distribution of NN output in 4L-SR-DF region.
Post-fit distribution of b-tagger output for leading b-jet in 4L-CR-ZZ region.
Measured values of the background normalizations obtained from the combined fit. The uncertainties include statistical and systematic sources.
Measured $\sigma_{t\bar{t}\text{Z}}$ cross sections obtained from the fits in the different lepton channels. The uncertainties include statistical and systematic sources.
Grouped impact of systematic uncertainties in the combined inclusive fit to data.
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 top-left).
Unfolded absolute cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 top-right).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 8 bottom-left).
Unfolded normalized cross section as a function of $p^{Z}_{T}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 8 bottom-right).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 top-left and Figure 11 top-left).
Unfolded absolute cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 top-right).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 17 bottom-left).
Unfolded normalized cross section as a function of $|y^{Z}$| in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 17 bottom-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 top-left and Figure 11 top-right).
Unfolded absolute cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 top-right).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 18 bottom-left).
Unfolded normalized cross section as a function of cos $\theta_{Z}^{*}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 18 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19 top-left and Figure 11 bottom-left).
Unfolded absolute cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, top-right).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 19, bottom-left).
Unfolded normalized cross section as a function of $p_{T}^{\mathrm{top}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 19, bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20 top-left and Figure 11 bottom-right).
Unfolded absolute cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, top-right).
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 20, bottom-left)
Unfolded normalized cross section as a function of $p_{T}^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 20, bottom-right)
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21 top-left and Figure 12 top-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 21, bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 21, top-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22 top-left and Figure 12 bottom-left).
Unfolded absolute cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 22, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}Z}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 22, bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23 top-left and Figure 12 bottom-right).
Unfolded absolute cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, top-right).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 23, bottom-left).
Unfolded normalized cross section as a function of $m^{t\bar{t}}$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 23, bottom-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24 top-left and Figure 12 top-right).
Unfolded absolute cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, top-right).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at particle-level (Figure 24, bottom-left).
Unfolded normalized cross section as a function of $|y^{t\bar{t}Z}|$ in the combination of $3\ell$ and $4\ell$ channels at parton-level (Figure 24, bottom-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 top-left and Figure 9 top-left).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level (Figure 25 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level (Figure 25 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 top-left and Figure 10 bottom-left).
Unfolded absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at particle-level (Figure 26 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ in the trilepton channel at parton-level (Figure 26 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 top-left and Figure 10 bottom-right).
Unfolded absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 top-right).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at particle-level (Figure 27 bottom-left).
Unfolded normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ in the trilepton channel at parton-level (Figure 27 bottom-right).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 top-left and Figure 10 top-left).
Unfolded absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 top-right).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at particle-level (Figure 28 bottom-left).
Unfolded normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ in the trilepton channel at parton-level (Figure 28 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 left and Figure 9 bottom-left).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level (Figure 29 right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 top-left and Figure 9 top-right).
Unfolded absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 top-right).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at particle-level (Figure 30 bottom-left).
Unfolded normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level (Figure 30 bottom-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 top-left and Figure 10 top-right).
Unfolded absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 top-right).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at particle-level (Figure 31 bottom-left).
Unfolded normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ in the tetralepton channel at parton-level (Figure 31 bottom-right).
Unfolded absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 left and Figure 9 bottom-right).
Unfolded normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level (Figure 32 right).
Bootstrap replicas (0-499) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data in all regions used in inclusive cross section measurement. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(t\bar{t}, Z)|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(Z, t_{lep})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|y^{t\bar{t}Z}|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $3\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $y^{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{\mathrm{top}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable cos $\theta^{*}_{Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{\text{T}}^{\ell, non-Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $H_{\text{T}}^{\text{l}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $m^{t\bar{t}Z}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $N_{\text{jets}}$ in $4\ell$ channel. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $|\Delta y(Z, t_{lep})|$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p^{Z}_{T}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (0-499) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Bootstrap replicas (500-999) for data, variable $p_{T}^{t\bar{t}}$. The used bootstrap method is described in ATL-PHYS-PUB-2021-011 (https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-011/).
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Parton-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Parton-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Parton-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Parton-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Parton-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta y(Z, t_{lep})|$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{\text{T}}^{\ell, non-Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $H_{\text{T}}^{\text{ l}}$ variable.
Particle-level acceptance and selection efficiency histograms for $N_{\text{jets}}$ variable.
Particle-level acceptance and selection efficiency histograms for cos $\theta_{Z}^{*}$ variable.
Particle-level acceptance and selection efficiency histograms for $p^{Z}_{T}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{Z}$| variable.
Particle-level acceptance and selection efficiency histograms for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $m^{t\bar{t}Z}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{\mathrm{top}}$ variable.
Particle-level acceptance and selection efficiency histograms for $p_{T}^{t\bar{t}}$ variable.
Particle-level acceptance and selection efficiency histograms for $|y^{t\bar{t}Z}|$ variable.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-DF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region SR-4L-SF.
Migration matrix for cos $\theta_{Z}^{*}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(t\bar{t}, Z)|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta\Phi(Z, t_{lep})|/\pi$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|\Delta y(Z, t_{lep})|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $H_{\text{T}}^{\text{ l}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}Z}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $m^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $N_{\text{jets}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p^{Z}_{T}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{\mathrm{top}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-DF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region SR-4L-SF.
Migration matrix for $p_{T}^{t\bar{t}}$ variable at parton-level in region CR-4L-ZZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $p_{\text{T}}^{\ell, non-Z}$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{Z}$| variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{Z}$| variable at parton-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at particle-level in region CR-4L-ZZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-ttZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-tZq.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-3L-WZ.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-DF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region SR-4L-SF.
Migration matrix for $|y^{t\bar{t}Z}|$ variable at parton-level in region CR-4L-ZZ.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{\mathrm{top}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{T}^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(t\bar{t}, Z)|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at particle-level.
Covariance matrix for absolute cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for normalized cross section as a function of $m^{t\bar{t}}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{t\bar{t}Z}|$ at parton-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at particle-level.
Covariance matrix for absolute cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for normalized cross section as a function of cos $\theta_{Z}^{*}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(l_{t}^{+}, l_{\bar{t}}^{-})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta\Phi(Z, t_{lep})|/\pi$ at parton-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at particle-level.
Covariance matrix for absolute cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for normalized cross section as a function of $|\Delta y(Z, t_{lep})|$ at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ at in the tetralepton channel parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the tetralepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for normalized cross section as a function of $H_{\text{T}}^{\text{l}}$ in the trilepton channel at parton-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the tetralepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for normalized cross section as a function of $N_{\text{jets}}$ in the trilepton channel at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p^{Z}_{T}$ at parton-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at particle-level.
Covariance matrix for absolute cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for normalized cross section as a function of $p_{\text{T}}^{\ell, non-Z}$ at parton-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at particle-level.
Covariance matrix for absolute cross section as a function of $|y^{Z}$| at parton-level.
Covariance matrix for normalized cross section as a function of $|y^{Z}$| at parton-level.
Ranking of nuisance parameters and background normalizations on signal strength for inclusive cross section measurement in combination of all channels
Correlation matrix of the input particle-level observables used in the EFT fit.
Measurements of single-, double-, and triple-differential cross-sections are presented for boosted top-quark pair-production in 13 $\text{TeV}$ proton-proton collisions recorded by the ATLAS detector at the LHC. The top quarks are observed through their hadronic decay and reconstructed as large-radius jets with the leading jet having transverse momentum ($p_{\text{T}}$) greater than 500 GeV. The observed data are unfolded to remove detector effects. The particle-level cross-section, multiplied by the $t\bar{t} \rightarrow W W b \bar{b}$ branching fraction and measured in a fiducial phase space defined by requiring the leading and second-leading jets to have $p_{\text{T}} > 500$ GeV and $p_{\text{T}} > 350$ GeV, respectively, is $331 \pm 3 \text{(stat.)} \pm 39 \text{(syst.)}$ fb. This is approximately 20$\%$ lower than the prediction of $398^{+48}_{-49}$ fb by Powheg+Pythia 8 with next-to-leading-order (NLO) accuracy but consistent within the theoretical uncertainties. Results are also presented at the parton level, where the effects of top-quark decay, parton showering, and hadronization are removed such that they can be compared with fixed-order next-to-next-to-leading-order (NNLO) calculations. The parton-level cross-section, measured in a fiducial phase space similar to that at particle level, is $1.94 \pm 0.02 \text{(stat.)} \pm 0.25 \text{(syst.)}$ pb. This agrees with the NNLO prediction of $1.96^{+0.02}_{-0.17}$ pb. Reasonable agreement with the differential cross-sections is found for most NLO models, while the NNLO calculations are generally in better agreement with the data. The differential cross-sections are interpreted using a Standard Model effective field-theory formalism and limits are set on Wilson coefficients of several four-fermion operators.
Fiducial phase-space cross-section at particle level.
$p_{T}^{t}$ absolute differential cross-section at particle level.
$|y^{t}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}$ absolute differential cross-section at particle level.
$|{y}^{t,1}|$ absolute differential cross-section at particle level.
$p_{T}^{t,2}$ absolute differential cross-section at particle level.
$|{y}^{t,2}|$ absolute differential cross-section at particle level.
$m^{t\bar{t}}$ absolute differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y^{t\bar{t}}|$ absolute differential cross-section at particle level.
$\chi^{t\bar{t}}$ absolute differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at particle level.
$|\cos\theta^{*}|$ absolute differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at particle level.
$|y^{t}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}$ normalized differential cross-section at particle level.
$|{y}^{t,1}|$ normalized differential cross-section at particle level.
$p_{T}^{t,2}$ normalized differential cross-section at particle level.
$|{y}^{t,2}|$ normalized differential cross-section at particle level.
$m^{t\bar{t}}$ normalized differential cross-section at particle level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y^{t\bar{t}}|$ normalized differential cross-section at particle level.
$\chi^{t\bar{t}}$ normalized differential cross-section at particle level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at particle level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at particle level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at particle level.
$|\cos\theta^{*}|$ normalized differential cross-section at particle level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at particle level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Fiducial phase-space cross-section at parton level.
$p_{T}^{t}$ absolute differential cross-section at parton level.
$|y^{t}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}$ absolute differential cross-section at parton level.
$|y^{t,1}|$ absolute differential cross-section at parton level.
$p_{T}^{t,2}$ absolute differential cross-section at parton level.
$|{y}^{t,2}|$ absolute differential cross-section at parton level.
$m^{t\bar{t}}$ absolute differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ absolute differential cross-section at parton level.
${\chi}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ absolute differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ absolute differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ absolute differential cross-section at parton level.
$|\cos\theta^{*}|$ absolute differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ absolute differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$p_{T}^{t}$ normalized differential cross-section at parton level.
$|y^{t}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}$ normalized differential cross-section at parton level.
$|y^{t,1}|$ normalized differential cross-section at parton level.
$p_{T}^{t,2}$ normalized differential cross-section at parton level.
$|{y}^{t,2}|$ normalized differential cross-section at parton level.
$m^{t\bar{t}}$ normalized differential cross-section at parton level.
$p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|{y}^{t\bar{t}}|$ normalized differential cross-section at parton level.
${\chi}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|y_{B}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|p_{out}^{t\bar{t}}|$ normalized differential cross-section at parton level.
$|\Delta \phi(t_{1}, t_{2})|$ normalized differential cross-section at parton level.
$H_{T}^{t\bar{t}}$ normalized differential cross-section at parton level.
$|\cos\theta^{*}|$ normalized differential cross-section at parton level.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.6 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.6 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes |{y}^{t,2}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,2}|$ < 0.2.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,2}|$ < 0.5.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,2}|$ < 1.
$|{y}^{t,2}|\otimes p_{T}^{t,2}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,2}|$ < 2.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 TeV < $p_{T}^{t,1}$ < 0.55 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
$p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.75 TeV < $p_{T}^{t,1}$ < 2 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t,1}|$ < 0.2.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t,1}|$ < 0.5.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t,1}|$ < 1.
$|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t,1}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 TeV < $p_{T}^{t\bar{t}}$ < 0.1 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.1 TeV < $p_{T}^{t\bar{t}}$ < 0.2 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 TeV < $p_{T}^{t\bar{t}}$ < 0.35 TeV.
$p_{T}^{t\bar{t}}\otimes m^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.35 TeV < $p_{T}^{t\bar{t}}$ < 1 TeV.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.2.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.2 < $|{y}^{t\bar{t}}|$ < 0.5.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
$|{y}^{t\bar{t}}|\otimes p_{T}^{t\bar{t}}$ normalized differential cross-section at parton level, for 1 < $|{y}^{t\bar{t}}|$ < 2.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0 < $|{y}^{t\bar{t}}|$ < 0.3 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.3 < $|{y}^{t\bar{t}}|$ < 0.9 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 0.9 TeV < $m^{t\bar{t}}$ < 1.2 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.2 TeV < $m^{t\bar{t}}$ < 1.5 TeV.
$|{y}^{t\bar{t}}|\otimes m^{t\bar{t}}\otimes p_{T}^{t,1}$ normalized differential cross-section at parton level, for 0.9 < $|{y}^{t\bar{t}}|$ < 2 and 1.5 TeV < $m^{t\bar{t}}$ < 4 TeV.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.55 TeV < $p_{T}^{t,1}$ < 0.625 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ normalized differential cross-section at particle level for 0.5 < $|{y}^{t\bar{t}}|$ < 1.
Covariance matrix between the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2 and the $|{y}^{t,1}|\otimes m^{t\bar{t}}$ normalized differential cross-section at particle level for 0 < $|{y}^{t,1}|$ < 0.2.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5.
Covariance matrix between the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0.2 < $|{y}^{t,1}|$ < 0.5 and the $|{y}^{t,1}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t,1}|$ < 2.
Covariance matrix between the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV and the $p_{T}^{t,1}\otimes m^{t\bar{t}}$ absolute differential cross-section at parton level for 0.625 TeV < $p_{T}^{t,1}$ < 0.75 TeV.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes p_{T}^{t,1}$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
Covariance matrix between the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 0 < $|{y}^{t\bar{t}}|$ < 0.2 and the $|{y}^{t\bar{t}}|\otimes |{y}^{t,1}|$ absolute differential cross-section at parton level for 1 < $|{y}^{t\bar{t}}|$ < 2.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.