The total cross sections for the three γp → Nππ reactions have been measured for photon energies from 400 to 800 MeV. The γ p → p π 0 π 0 and γ p → n π + π 0 cross sections have never been measured before while the γ p → p π + π − results are much improved compared to earlier data. These measurements were performed with the large acceptance hadronic detector DAPHNE, at the tagged photon beam facility of the MAMI microtron in Mainz.
No description provided.
No description provided.
No description provided.
The total photoabsorption cross section for 4He has been measured for the first time over a wide photon energy range (200 MeV<~Eγ<~800 MeV). By using the large acceptance detector DAPHNE at the tagged photon facility of the MAMI microtron in Mainz high precision results with small systematic errors were obtained. This measurement shows that 4He has a behavior similar to heavy nuclei and, in particular, a reduction of the cross section with respect to the lighter nuclei is found for Eγ>600 MeV.
No description provided.
The total cross section for the γn→pπ−π0 reaction has been measured over the photon energy range 450–800 MeV at the 855 MeV MAMI Microtron in Mainz with the large acceptance detector DAPHNE and using a deuterium target. As expected, this reaction has a very similar cross section to the γp→nπ+π0 channel and its amplitude is strongly underestimated by the existing double pion photoproduction models.
No description provided.
We have measured the absolute unpolarized cross sections for photon electro-production off the proton ep → epγ with the Three-Spectrometer-Setup at MAMI at a momentum transfer q=600 MeV/c and a virtual photon polarization ɛ=0.62. The momentum q ′ of the outgoing real photon range from 33 to 111 MeV/c. We extracted two combinations of the recently introduced generalized polarizabilities [1,2].
No description provided.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
Cross sections were determined in the Δ(1232) excitation region for the reactions 3 He( γ , π + ) 3 H, 3 He (γ, π + ) nd,nnp and 3 He (γ, π − ) ppp at several photon energies and pion emission angles. Inclusive charged-pion photoproduction spectra were measured with a magnetic spectrometer using quasi-monochromatic positron-annihilation photons. Quasi-free mechanisms have been clearly observed, but pion-nucleon and nucleon-nucleon rescattering and Pauli exclusion mechanisms must be considered to explain the trend of the data for the different channels.
No description provided.
No description provided.
No description provided.
An absolute measurement of π0 photoproduction on the proton has been carried out in the threshold region (from 144.7 to 173 MeV) by use of tagged annihilation photons. The measured cross sections, differential in the recoiling-proton energy, are used to perform a multipole analysis which gives a value & &, in disagreement with low-energy-theorem predictions. Total cross sections and coefficients of the π0 angular distribution are presented.
No description provided.
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations.
Target asymmetry for $\pi^0\pi^0$ as a function of the polar angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\pi^0\pi^0$ invariant mass for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
Target asymmetry for $\pi^0\pi^0$ as a function of the $\phi^*$ angle for bins of the incident photon energy in the range of $E_\gamma$ = 650-2600 MeV.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.