Limits on $\nu_\mu (\overline{\nu}_\mu) \to \nu_e (\overline{\nu}_e)$ oscillations based on a statistical separation of $\nu_e N$ charged current interactions in the CCFR detector at Fermilab are presented. $\nu_e$ interactions are identified by the difference in the longitudinal shower energy deposition pattern of $\nu_e N \rightarrow eX$ versus $\nu_\mu N \to \nu_\mu X$ interactions. Neutrino energies range from 30 to 600 GeV with a mean of 140 GeV, and $\nu_\mu$ flight lengths vary from 0.9 km to 1.4 km. The lowest 90% confidence upper limit in $sin^2 2\alpha$ of $1.1 \times 10^{-3}$ is obtained at $\Delta m^2 \sim 300 eV^2$. For $sin^2 2\alpha = 1$, $\Delta m^2 > 1.6 eV^2$ is excluded, and for $\Delta m^2 \gg 1000 eV^2$, $sin^2 2\alpha > 1.8 \times 10^{-3}$ is excluded. This result is the most stringent limit to date for $\Delta m^2 > 25 eV^2$ and it excludes the high $\Delta m^2$ oscillation region favoured by the LSND experiment. The $\nu_\mu$-to-$\nu_e$ cross-section ratio was measured as a test of $\nu_\mu (\bar\nu_\mu) \leftrightarrow \nu_e (\bar\nu_e)$ universality to be $1.026 \pm 0.055$.
ALPHA is the neutrino mixing angle. The result for SIN(ALPHA)**2 from the fit at each Delta(M)**2 for NUMU -->NUE oscillations. The 90% CL upper limit is equal to the best fit SIN(ALPHA)**2 + 1.2*SIGMA.
No description provided.
We present an improved determination of the proton structure functions $F_{2}$ and $xF_{3}$ from the CCFR $\nu $-Fe deep inelastic scattering (DIS) experiment. Comparisons to high-statistics charged-lepton scattering results for $F_{2}$ from the NMC, E665, SLAC, and BCDMS experiments, after correcting for quark-charge and heavy-target effects, indicate good agreement for $x>0.1$ but some discrepancy at lower x. The $Q^{2}$ evolution of the structure functions yields the quantum chromodynamics (QCD) scale parameter $\Lambda_{\bar{MS}}^{NLO,(4)}=337 \pm 28$(exp.) MeV. This corresponds to a value of the strong coupling constant at the scale of mass of the Z-boson of $\alpha _{S}(M_{Z}^{2})=0.119 \pm 0.002 (exp.) \pm 0.004 (theory)$ and is one of the most precise measurements of this quantity.
No description provided.
No description provided.
No description provided.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
A new structure function analysis of CCFR deep inelastic nu-N and nubar-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x=0.0045 and Q^2=0.3 GeV^2. Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F2_nu is studied in the limit Q^2 -> 0.
F2 measurements.
We report new measurements of inclusive direct photon production at high transverse momenta (pT) for π− and p interactions on Be at 500 GeV/c. The yields as a function of pT and rapidity (y) are in good agreement with expectations from next-to-leading-log QCD calculations employing recently extracted quark and gluon structure functions.
No description provided.
We present results from the initial run of Fermilab experiment E706. The data include incident π− and p beams at 500 GeV/c on Be and Cu targets, and span the kinematic ranges of transverse momentum and rapidity of 3.5≤pT≤10 GeV/c and −0.7≤yc.m.≤0.7, respectively. We have measured cross sections for π0 and direct-photon production, as well as the ηπ0 production ratio. From the data on Be and Cu, we have extracted the nuclear dependence of π0 production, parametrized as Aα. The cross sections are compared with next-to-leading-log QCD predictions for different choices of the QCD momentum scales and several sets of parton distribution functions.
No description provided.
No description provided.
No description provided.
We present new measurements of π0 production at high transverse momenta (pT) for π− and p interactions on Be and Cu targets at 500 GeV/c. The observed dependence of the yields as a function of pT and rapidity (y) is compared with expectations from leading-log QCD over a kinematic range in which the inclusive cross sections fall by more than 4 order of magnitude.
No description provided.
A dependence parameterized as A**POWER for both Pi- and P interactions.
We have studied the production of J/ψ and ψ(2S) charmonium mesons in 515 GeV/c π−Be collisions in the Feynman-x range 0.1<xF<0.8. J/ψ mesons were detected via their decay into μ+μ−, and ψ(2S) mesons were studied in both the μ+μ− and J/ψπ+π− decay modes. J/ψ differential cross sections have been measured as functions of xF,pT2, and the cosine of the Gottfried-Jackson decay angle. We measure an inclusive J/ψ cross section of B(J/ψ→μ+μ−)σ(π−Be→J/ψ+X)/A= [9.3±0.1(stat)±1.1(syst)] nb/nucleon for J/ψ xF≳0.1. Our results are compared with those from other experiments performed at lower beam energies. We also measure the differential ψ(2S) cross section as a function of both xF and pT2, and a ψ(2S) inclusive cross section of B(ψ(2S)→J/ψπ+π−)σ(π−Be→ψ(2S)+X)/A=[7. 4±1.5(stat)±1.2(syst)] nb/nucleon for ψ(2S) xF≳0.1. The fraction of the inclusive J/ψ yield due to ψ(2S) meson decays is 0.083±0.017(stat) ±0.013(syst), and the observed ratio of ψ(2S) decay rates is B(ψ(2S)→J/ψπ+π−)/B(ψ(2S)→μ+μ−) =30.2±7.2(stat)±6.8(syst). We have searched for production of ‘‘hidden’’ charm resonances decaying into either J/ψπ±,ψ(2S)π±, or J/ψπ+π− systems, and report an upper limit of 3.1 nb/nucleon for the product of branching ratio and cross section for the recently reported enhancement at a J/ψπ+π− mass of 3.836 GeV/c2. © 1996 The American Physical Society.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.
Statistical errors only. Normalization uncertainty is 12%.. Theta is the angle between the MU+ and the beam axis in the J/PSI restframe (Gottfried-Jackson decay angle).
We report on a sample of Jψ mesons coming from secondary vertices, a characteristic of heavyquark decay, detected in the Fermilab Meson West spectrometer. Based on eight signal events in which a Jψ emerges from a secondary vertex occurring in an air-gap region, we obtain an inclusive bb¯ cross section of 75 ± 31 ± 26 nb/nucleon. This result is compared to recent QCD predictions. We have also observed several events in the exclusive decay modes B±→Jψ+K± and B0→Jψ+K0* in which the B mass is fully reconstructed.
The cross section is multiplied on Br(J/PSI --> MU+ MU-).
No description provided.