Charged-particle multiplicity measurement in proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV with ALICE at LHC

The ALICE collaboration Aamodt, K. ; Abel, N. ; Abeysekara, U. ; et al.
Eur.Phys.J.C 68 (2010) 89-108, 2010.
Inspire Record 852450 DOI 10.17182/hepdata.54742

Charged-particle production was studied in proton-proton collisions collected at the LHC with the ALICE detector at centre-of-mass energies 0.9 TeV and 2.36 TeV in the pseudorapidity range |$\eta$| < 1.4. In the central region (|$\eta$| < 0.5), at 0.9 TeV, we measure charged-particle pseudorapidity density dNch/deta = 3.02 $\pm$ 0.01 (stat.) $^{+0.08}_{-0.05}$ (syst.) for inelastic interactions, and dNch/deta = 3.58 $\pm$ 0.01 (stat.) $^{+0.12}_{-0.12}$ (syst.) for non-single-diffractive interactions. At 2.36 TeV, we find dNch/deta = 3.77 $\pm$ 0.01 (stat.) $^{+0.25}_{-0.12}$ (syst.) for inelastic, and dNch/deta = 4.43 $\pm$ 0.01 (stat.) $^{+0.17}_{-0.12}$ (syst.) for non-single-diffractive collisions. The relative increase in charged-particle multiplicity from the lower to higher energy is 24.7% $\pm$ 0.5% (stat.) $^{+5.7}_{-2.8}$% (syst.) for inelastic and 23.7% $\pm$ 0.5% (stat.) $^{+4.6}_{-1.1}$% (syst.) for non-single-diffractive interactions. This increase is consistent with that reported by the CMS collaboration for non-single-diffractive events and larger than that found by a number of commonly used models. The multiplicity distribution was measured in different pseudorapidity intervals and studied in terms of KNO variables at both energies. The results are compared to proton-antiproton data and to model predictions.

23 data tables match query

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of DN/DETARAP for INEL collisions at a centre-of-mass energy of 2360 GeV.

More…

Measurement of Spin Spin Correlation Parameter C(NN) in Proton Proton Scattering at 6-GeV/c

Hicks, G. ; Miller, D. ; Wilson, C. ; et al.
Phys.Rev.D 12 (1975) 2594, 1975.
Inspire Record 91591 DOI 10.17182/hepdata.24849

As part of a program to determine proton-proton elastic-scattering amplitudes, we have measured the spin-spin correlation parameter CNN at 6 GeV/c. Measurements were made over the |t| range of 0.08 to 1.4 (GeV/c)2 using a polarized beam and a polarized target at the Argonne National Laboratory Zero Gradient Synchrotron.

1 data table match query

No description provided.


Measurement of the WZ production cross section and limits on anomalous triple gauge couplings in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 709 (2012) 341-357, 2012.
Inspire Record 954993 DOI 10.17182/hepdata.68039

This Letter presents a measurement of WZ production in 1.02 fb^-1 of pp collision data at sqrt(s) = 7 TeV collected by the ATLAS experiment in 2011. Doubly leptonic decay events are selected with electrons, muons and missing transverse momentum in the final state. In total 71 candidates are observed, with a background expectation of 12.1 +/- 1.4(stat.) +4.1/-2.0(syst) events. The total cross section for WZ production for Z gamma^* masses within the range 66 GeV to 116 GeV is determined to be sigma_WZ^tot = 20.5 +3.1/-2.8(stat.) +1.4/-1.3(syst.) +0.9/-0.8(lumi.)pb, which is consistent with the Standard Model expectation of 17.3 +1.3/-0.8 pb. Limits on anomalous triple gauge boson couplings are extracted.

1 data table match query

Total fiducial cross-section $WZ\to\ell\nu\ell\ell$.


Measurement of the p p ---> p p eta total cross-section between 1.265-GeV and 1.5-GeV

Chiavassa, E. ; Dellacasa, G. ; De Marco, N. ; et al.
Phys.Lett.B 322 (1994) 270-274, 1994.
Inspire Record 376677 DOI 10.17182/hepdata.28768

The total cross section of the pp→ pp η reaction has been measured at incident proton energies of 1.265, 1.3, 1.4 and 1.5 GeV by detecting the two photons from the η decay in the PINOT spectrometer. The data are compared with other near-threshold measurements and with the predictions of existing theoretical calculations.

1 data table match query

Value given at 1263 MeV assumes energy 2 MeV lower than nominal value. This uncertainty only affects this lowest energy point.


Underlying event measurements in $p$+$p$ collisions at $\sqrt{s}= 200 $ GeV at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.D 101 (2020) 052004, 2020.
Inspire Record 1771348 DOI 10.17182/hepdata.95537

Particle production sensitive to non-factorizable and non-perturbative processes that contribute to the underlying event associated with a high transverse momentum ($p_{T}$) jet in proton+proton collisions at $\sqrt{s}$=200 GeV is studied with the STAR detector. Each event is divided into three regions based on the azimuthal angle with respect to the highest-$p_{T}$ jet direction: in the leading jet direction ("Toward"), opposite to the leading jet ("Away"), and perpendicular to the leading jet ("Transverse"). In the Transverse region, the average charged particle density is found to be between 0.4 and 0.6 and the mean transverse momentum, $\langle p_{T}\rangle$, between 0.5-0.7 GeV/$c$ for particles with $p_{T}$$>$0.2 GeV/$c$ at mid-pseudorapidity ($|\eta|$$<$1) and jet $p_{T}$$>$15 GeV/$c$. Both average particle density and $\langle p_{T}\rangle$ depend weakly on the leading jet $p_{T}$. Closer inspection of the Transverse region hints that contributions to the underlying event from initial- and final-state radiation are significantly smaller in these collisions than at the higher energies, up to 13 TeV, recorded at the LHC. Underlying event measurements associated with a high-$p_{T}$ jet will contribute to our understanding of QCD processes at hard and soft scales at RHIC energies, as well as provide constraints to modeling of underlying event dynamics.

6 data tables match query

Average charged particle multiplicity densities for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. The solid curves are the Toward region. The sparse dashed curves are the Away region. The dense dashed curves are the Transverse region.

Transverse region average charged particle densities for pT>0.2 GeV/c (open symbols) and pT>0.5 GeV/c (filled symbols). Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune.

Charged particle <pT> for Toward, Away, and Transverse regions as functions of the leading jet pT, with charged particle pT>0.2 GeV/c. Simulations are also shown as curves. The wide curves are PYTHIA 6 (STAR). The middle width curves are default PYTHIA 6 Perugia 2012 tune. The thin curves are PYTHIA 8 Monash 2013 tune. Note the three curves overlap for the Transverse region calculations.

More…

Measurements of the ZZ production cross sections in the 2 l 2 nu channel in proton-proton collisions at sqrt(s) = 7 and 8 TeV and combined constraints on triple gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 511, 2015.
Inspire Record 1353393 DOI 10.17182/hepdata.69984

Measurements of the ZZ production cross sections in proton-proton collisions at center-of-mass energies of 7 and 8 TeV are presented. Candidate events for the leptonic decay mode ZZ to 2 l 2 nu, where l denotes an electron or a muon, are reconstructed and selected from data corresponding to an integrated luminosity of 5.1 (19.6) inverse femtobarns at 7 (8) TeV collected with the CMS experiment. The measured cross sections, sigma(pp to ZZ) = 5.1 -1.4 +1.5 (stat) -1.1 +1.4 (syst) +/- 0.1 (lumi) pb at 7 TeV, and 7.2 -0.8 +0.8 (stat.) -1.5 +1.9 (syst) +/- 0.2 (lumi) pb at 8 TeV, are in good agreement with the standard model predictions with next-to-leading-order accuracy. The selected data are analyzed to search for anomalous triple gauge couplings involving the ZZ final state. In the absence of any deviation from the standard model predictions, limits are set on the relevant parameters. These limits are then combined with the previously published CMS results for ZZ in 4 l final states, yielding the most stringent constraints on the anomalous couplings.

1 data table match query

Using a maximum-likelihood fit to the reduced-MET data distributions, with all the systematic uncertainties incorporated as nuisance parameters, we obtain the following cross sections for the pp->ZZ process (with both Z bosons in the mass range 60-120 GeV). The first systematic uncertainty is the combined systematic uncertainty excluding luminosity, the second is the luminosity. The theory calculations are 6.2+0.3-0.2 pb at 7 TeV and 7.6+0.4-0.3 pb at 8 TeV, including NLO QCD and NLO EW corrections.


Measurement of the high-mass Drell--Yan differential cross-section in pp collisions at sqrt(s)=7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 725 (2013) 223-242, 2013.
Inspire Record 1234228 DOI 10.17182/hepdata.61422

This Letter reports a measurement of the high-mass Drell-Yan differential cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. Based on an integrated luminosity of 4.9 /fb, the differential cross-section in the Z/gamma* to e+e- channel is measured with the ATLAS detector as a function of the invariant mass, Mee, in the range 116 < Mee < 1500 GeV, for a fiducial region in which both the electron and the positron have transverse momentum pT > 25 GeV and pseudorapidity eta < 2.5. A comparison is made to various event generators and to the predictions of perturbative QCD calculations at next-to-next-to-leading order.

1 data table match query

Measured differential cross sections as a function of the di-electron mass for DY production at the Born and dressed levels.


Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables match query

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Observation of an ABC effect in proton-proton collisions

Dymov, S. ; Hartmann, M. ; Kacharava, A. ; et al.
Phys.Rev.Lett. 102 (2009) 192301, 2009.
Inspire Record 812534 DOI 10.17182/hepdata.51593

The cross section for inclusive multipion production in the pp->ppX reaction was measured at COSY-ANKE at four beam energies, 0.8, 1.1, 1.4, and 2.0 GeV, for low excitation energy in the final pp system, such that the diproton quasi-particle is in the 1S0 state. At the three higher energies the missing mass Mx spectra show a strong enhancement at low Mx, corresponding to an ABC effect that moves steadily to larger values as the energy is increased. Despite the missing-mass structure looking very different at 0.8 GeV, the variation with Mx and beam energy are consistent with two-pion production being mediated through the excitation of two Delta(1232) isobars, coupled to S-- and D-- states of the initial pp system.

4 data tables match query

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 0.8 GeV.

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.1 GeV.

The P P --> P P X differential cross section as a function of the square ofthe missing mass (X) at incident beam energy of 1.4 GeV.

More…

Search for supersymmetry in events with photons, bottom quarks, and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 719 (2013) 261-279, 2013.
Inspire Record 1198427 DOI 10.17182/hepdata.9959

A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.

6 data tables match query

Missing ET distribution.

Signal Point Information: (1) Number of Monte Carlo events generated (2) Total signal cross section (pb) (3) Signal acceptance (4) Relative uncertainty on acceptance (5) CLs expected (6) CLs observed.

The observed limit contour in the GLUINO-NEUTRALINO plane.

More…