We present results on Λc+ production in 29-GeV e+e− annihilation. The Λc+ are observed via their semileptonic decays to Λe+X and Λμ+X. With radiative corrections, we find σ(e+e−→Λc+X)〉BΛc+→eΛX)= 1.5±0.6±0.5 pb or 0.0038±0.0015±0.0012 Λc+→Λe+X decay per hadronic event, and σ(e+e−Λc+X)B(Λc+→μΛX)= 1.4±1.4±0.4 pb or 0.0035±0.0035±0.0011 Λc+→Λμ+X decay per hadronic event. These results can be used to place constraints on the predictions of various production models.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA E+ decay channel.
Cross sections * branching ratio for LAMBDA/C+ production in LAMBDA MU+ decay channel.
In the reaction p p → 3π + 3π − 2227 events, and in the reaction p p → 3π + 3π − π 0 6578 events have been analyzed. The general characteristics of the reactions, such as total cross sections, angular and momentum distributions, the production of ϱ, f, ω and η mesons, and angular correlations are presented.
No description provided.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
THETA being the angle between PI+ and P (or PI- and PBAR) in CMS.
The doubly-differential cross sections for the pp → ppη and pd → ηX reactions have been measured at incident proton energies of 1.3 and 1.5 GeV. The ratio of the pd to pp -induced cross sections varies from about 8–10 at 1.3 GeV to 4.5–6 at 1.5 GeV in the η kinetic energy interval 100 MeV ⩽ T η ⩽220 MeV. Information on the pn → ηX reaction has been extracted from these measurements within the framework of a simple folding model.
No description provided.
No description provided.
No description provided.
Absolute cross sections for Compton scattering from protons have been determined at 180° for the backscattered photon at incident laboratory photon energies of 98 and 132 MeV. For the difference between the electric and the magnetic polarizability of the proton a value of (7.03 − 2.37 +2.49 − 2.05 +2.14 ) × 10 −4 fm 3 has been derived using the predictions from calculations based on relativistic dispersion relations.
No description provided.
The total cross section of the pp→ pp η reaction has been measured at incident proton energies of 1.265, 1.3, 1.4 and 1.5 GeV by detecting the two photons from the η decay in the PINOT spectrometer. The data are compared with other near-threshold measurements and with the predictions of existing theoretical calculations.
Value given at 1263 MeV assumes energy 2 MeV lower than nominal value. This uncertainty only affects this lowest energy point.
Using BEBC equipped with a hydrogen-filled neon-surrounded track-sensitive target, the charged current cross sections and structure functions of hydrogen and neon targets traversed by the same neutrinos and antineutrinos are compared directly. The measured total cross-section ratios between hydrogen and neon allow precise total cross-section values for hydrogen to be inferred. Using this normalization, the ν and ν hydrogen data are combined and the quark distributions in free nucleons, parametrised as functions of ξ, are extracted. This free-nucleon parametrisation is then compared directly with the neon data in order to measure nuclear effects such as those recently reported by the EMC collaboration. Only small effects are seen, in excellent agreement with recent SLAC data in a more similar A and q 2 range.
Measured charged current total cross section.
Measured charged current total cross section.
AVERAGE Q**2 IS 6.9GEV**2 FOR NU AND 4.3GEV**2 FOR ANU.
The first direct measurement of electron-neutrino quasielastic and quasielastic-like scattering on hydrocarbon in the few-GeV region of incident neutrino energy has been carried out using the MINERvA detector in the NuMI beam at Fermilab. The flux-integrated differential cross sections in electron production angle, electron energy and $Q^{2}$ are presented. The ratio of the quasielastic, flux-integrated differential cross section in $Q^{2}$ for $\nu_{e}$ with that of similarly-selected $\nu_{\mu}$-induced events from the same exposure is used to probe assumptions that underpin conventional treatments of charged-current $\nu_{e}$ interactions used by long-baseline neutrino oscillation experiments. The data are found to be consistent with lepton universality and are well-described by the predictions of the neutrino event generator GENIE.
The $\nu_{e}+\bar{\nu}_{e}$ flux as a function of neutrino energy from the beam simulation for the data used in this analysis. The $\bar{\nu}_{e}$ fraction is shown separately to emphasize the dominance of $\nu_{e}$ in the sum.
Flux-integrated differential $\nu_{e}$ CCQE-like cross section versus electron energy.
Covariance matrix for flux-integrated differential $\nu_{e}$ CCQE-like cross section versus electron energy.
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current $\nu_\mu$ interactions is combined with muon kinematics to permit separation of the quasielastic and $\Delta$(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and $\Delta$ resonance processes are needed to describe the data. The data in this kinematic region also has an enhanced population of multi-proton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.
The $\nu_\mu$ flux, in units 10$^{-5}$ / m$^{2}$ / P.O.T. / GeV.
Measured cross section per nucleon, in units 10$^{-42}$ cm$^2$ / GeV$^2$.
The forward cross sections for the reactions π−p→K+Σ− and K−p→π+Σ− have been determined for incident particle momenta in the range of 2.75 to 3.50 GeV/c, and an upper limit was established at 5.00 GeV/c. These measurements show that the double-charge-exchange process π−p→K+Σ− is suppressed by a factor of 1500 at 3 GeV/c relative to the single-exchange reaction π+p→K+Σ+.
No description provided.
No description provided.
We have measured the reactions π±p→π±p and π+p→K+Σ+ at 5.0 GeV/c in the region 2.2<−t<3.5 (GeV/c)2. We find the minimum cross section of the dip at −t=2.8 (GeV/c)2 in π+p elastic scattering to be 0.16 ± 0.05 μb/GeV2. The π−p differential cross section exhibits similar structure, while the π+p→K+Σ+ channel shows a steady decline in cross section as |t| increases. The polarization of the Σ+ remains large and positive to at least −t=2.8 (GeV/c)2.
No description provided.
No description provided.
No description provided.