We present measurements of the differential cross section $d\sigma/dp_{T}^{\gamma}$ for the associated production of a $c$-quark jet and an isolated photon with rapidity $|y^{\gamma}|< 1.0$ and transverse momentum $30 < p_{T}^{\gamma} < 300$ GeV. The $c$-quark jets are required to have $|y^{jet}| < 1.5$ and $p_{T}^{jet} >15$ GeV. The ratio of differential cross sections for photon+ c and photon+ b production as a function of $p_{T}^{\gamma}$ is also presented. The results are based on data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ recorded with the D0 detector at the Fermilab Tevatron $p\bar{p}$ Collider at $\sqrt{s}=$1.96 TeV. The obtained results are compared to next-to-leading order perturbative QCD calculations using various parton distribution functions, to predictions based on the $k_{T}$-factorization approach, and to predictions from the Sherpa and Pythia Monte Carlo event generators.
The differential cross section as a function of PT for the production of GAMMA+ Charmed JET in PBAR P collisions at a centre of mass energy of 1.96 TeV.
The ratio of the (GAMMA+ CJET) to (GAMMA+ BJET) cross section in bins of the GAMMA PT.
The $p_{\rm T}$-differential inclusive production cross section of the prompt charm-strange meson $\rm D_s^+$ in the rapidity range $|y|<0.5$ was measured in proton-proton collisions at $\sqrt{s}=7$ TeV at the LHC using the ALICE detector. The analysis was performed on a data sample of $2.98 \times 10^8$ events collected with a minimum-bias trigger. The corresponding integrated luminosity is $L_{\rm int}=4.8$/nb. Reconstructing the decay ${\rm D_s^{+}\to \phi\pi^+}$, with $\phi\to {\rm K}^-{\rm K}^+$, and its charge conjugate, about 480 ${\rm D_s^{\pm}}$ mesons were counted, after selection cuts, in the transverse momentum range $2<p_{\rm T}<12$ Gev/$c$. The results are compared with predictions from models based on perturbative QCD. The ratios of the cross sections of four D meson species (namely ${\rm D^0}$, ${\rm D^+}$, ${\rm D^{*+}}$ and ${\rm D_s^+}$) were determined both as a function of $p_{\rm T}$ and integrated over $p_{\rm T}$ after extrapolating to full $p_{\rm T}$ range, together with the strangeness suppression factor in charm fragmentation. The obtained values are found to be compatible within uncertainties with those measured by other experiments in $\rm e^+e^-$, ep and pp interactions at various centre-of-mass energies.
pT-differential inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV.
pT-integrated inclusive cross section in |y| < 0.5 for prompt D_s^+ meson production in pp collisions at sqrt(s) = 7 TeV. The latter three systematic uncertainties arise from extrapolating the visible cross section to the full pT range, luminosity, and the branching ratio, respectively.
Ratio of D^+ to D^0 meson production cross sections in |y| < 0.5 as a function of pT.
This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at sqrt{s}=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb^-1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y| < 2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions.
No description provided.
No description provided.
No description provided.
A measurement is presented of the inelastic proton-proton cross section at a centre-of-mass energy of sqrt(s) = 7 TeV. Using the CMS detector at the LHC, the inelastic cross section is measured through two independent methods based on information from (i) forward calorimetry (for pseudorapidity 3 < abs(eta) < 5), in collisions where at least one proton loses more than 5E-6 of its longitudinal momentum, and (ii) the central tracker (abs(eta) < 2.4), in collisions containing an interaction vertex with more than 1, 2, or 3 tracks with transverse momenta pT > 200 MeV. The measurements cover a large fraction of the inelastic cross section for particle production over about 9 units of pseudorapidity and down to small transverse momenta. The results are compared with those of other experiments, and with models used to describe high-energy hadronic interactions.
$\sigma_\text{inel}$ at $\sqrt{s}=7$ TeV $\xi>5x10^{-6}$.
The production cross section of electrons from semileptonic decays of beauty hadrons was measured at mid-rapidity (|y| < 0.8) in the transverse momentum range $1 < p_{\rm T} < 8$ Gev/$c$ with the ALICE experiment at the CERN LHC in pp collisions at a center of mass energy $\sqrt{s} = 7$ TeV using an integrated luminosity of 2.2 nb$^{-1}$. Electrons from beauty hadron decays were selected based on the displacement of the decay vertex from the collision vertex. A perturbative QCD calculation agrees with the measurement within uncertainties. The data were extrapolated to the full phase space to determine the total cross section for the production of beauty quark-antiquark pairs.
Double differential cross section for charm and beauty electron production as a function of transverse momentum. The systematic error does not include the error on the Luminosity (3.5%).
The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15 inverse nb of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt(s_NN)=2.76 TeV. The Z bosons are reconstructed via di-electron and di-muon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.
The corrected per-event rapidity distribution of Z bosons over the centrality region 0-80%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 0-5%.
The corrected per-event transverse momentum distribution of Z bosons in the centrality region 5-10%.
We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.
No description provided.
No description provided.
No description provided.
The interactions of 720 MeV negative pions with protons were investigated using pictures from the 35 cm Saclay hydrogen bubble chamber. Partial cross-sections were determined with the following results: σ(elastic)=13.2±0.5) mb, σ(π−pπ0)=(5.25±0.30) mb, σ(π−π+n)=()7.17±0.35) mb σ (neutrals)=(9.9±0.7) mb, σ (2π production)=(1.03±0.13) mb. The elastic-scattering angular distribution was fitted with a fifth-order polynomial in cos θ* π which shows the effect of a significantF 5/2-D 5/2 interference contribution and predicts a value for (dσ/dΩ) (0°) in agreement with dispersion theory. For both single-π production channels, the two-body effective mass plots and c.m. angular distributions are presented, discussed and compared with the predictions from phase-space, the Olsson-Yodh isobar model and the pole model of isobar production. TheN *(3/2, 3/2) isobar is seen to play an important role in the ππN final states, but the agreement of the data with the existing isobar models and their assumptions is not satisfactory. A comparison of the different two-pion production cross-sections π−pπ−π+, π−pπ0π0 and π−π+nπ0 suggests a strong contribution of π−p→η0n to the π−π+nπ0 final state. An upper limit for σ(π−p→η0n) of (3.0±0.4) mb was obtained.
No description provided.
In the course of a systematic study of K+p interactions at 3.0 GeV/c, the elastic-scattering reaction has been investigated. A total of 1720 events were identified as elastic scatters, giving a cross-section of (4.8±0.4) mb. The angular distribution shows characteristic diffraction peaking and was fitted using dσ/d|t|=(dσ/d|t|)0 exp [αt+βt 2], in the momentum-transfer region (0.05÷1.14) (GeV/c)2. The best fit gaveα=(4.55±0.39) (GeV/c)−2 andβ=(0.64±0.42)(GeV/c)−4. The extrapolated experimental cross-section at 0°, (dσ/dt)0, is found to be (19.5±2.3) mb/(GeV/c)2, and exceeds the optical-theorem prediction by (3.8±2.3) mb/(GeV/c)2, implying that there is a contribution from the real part of the K+p scattering amplitude at 3.0 GeV/c.
No description provided.
The differential cross-section for elastic charge-exchange scattering of neutrons on protons has been measured at 8 GeV/c over forward laboratory scattering angles (0÷90) mrad (square of four-momentum transfer 0<−t<0.5 (GeV/c)2). The method utilized acoustic spark chambers and about 1900 elastic-scattering events were analysed. A value of (dσ/dΩ)lab=(20±6) mb/sr (dσ/dt=(0.93±0.28) mb/(GeV/c)2) was obtained for the forward differential cross-section and an estimated (0.06±0.03) mb for the elastic charge exchange cross-section. Both cross-sections show the decreased values expected from Pomeranchuk’s second theorem (1) when compared with results at lower energies (2). Further comparison shows that the narrow forward peak in the distribution of dσ/dt previously observed for −t<0.05, is still present at 8 GeV/c, varying in shape only slowly, if at all, with energy. For −t>0.1 however, energy dependence is apparent. The results also suggest that the interaction is spin-dependent and/or that the real parts of the scattering amplitudes in the isospin states 0 and 1 are different. Comparisons with the theoretical predictions show good agreement with the value of forward cross-section given by the Regge pole approach ofAhmadzadeh (3). The model ofRingland andPhillips (4) for single-pion exchange with absorption agrees with our results for −t<0.01 but a predicted secondary peak at −t∼0.08 is not observed.
'2'. '3'.
'2'. '3'.
No description provided.