The total hadronic cross section for virtual photon-photon interactions is reported for center-of-mass energy, W, between 2 and 20 GeV. The data were obtained via the process e+e−→e+e−γ*γ*→e e−++hadrons with both scattered e+ and e− detected. Each photon’s four-momentum squared, q2, ranges from -0.1 to -1.6 GeV2. Dependence upon q2 agrees with a generalized vector-meson-dominance model. The total cross section shows little W dependence, averaging 125 nb at q12=q22=-0.3. Photon helicity interference terms are determined.
CROSS SECTION EXTRAPOLATED USING THE GENERALISED VECTOR CT. = Data are for >= 3 hadrons. DOMINANCE MODEL TO Q1=Q2=0.
Data are for >= 3 hadrons.
Data are for >= 3 hadrons.
Data are reported on the momentum distributions of Λ, Λ (1520), φ (1020), Λ and p , inclusively produced between 1° and 2° with respect to one of the primary proton beams at the CERN Intersecting Storage Rings. In addition, the decay angular distribution of the Λ(1520), the ratio of the cross sections for the production of Σ − (1385) and Σ + (1385) and the ratios among different charge states of the pairs Λπ , Λ K, Δ ++ (1232) π and ππ have been measured. These data are confronted with current ideas on fragmentation.
No description provided.
In this letter, measurements of the shared momentum fraction ($z_{\rm{g}}$) and the groomed jet radius ($R_{\rm{g}}$), as defined in the SoftDrop algorihm, are reported in \pp collisions at $\sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{\rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{\rm{T, jet}}$ range accessible at $\sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{\rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{\rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{\rm{g}}$ and $R_{\rm{g}}$, resulting in opportunities for fine parameter tuning of these models for \pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{\rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.4$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.2$.
The data points and the error bars represent the mean $p_{\rm{T, jet}}^{\rm{det}}$ and the width (RMS) for a given $p_{\rm{T, jet}}^{\rm{part}}$ selection $R = 0.6$.
We employ data taken by the JADE and OPAL experiments for an integrated QCD study in hadronic e+e- annihilations at c.m.s. energies ranging from 35 GeV through 189 GeV. The study is based on jet-multiplicity related observables. The observables are obtained to high jet resolution scales with the JADE, Durham, Cambridge and cone jet finders, and compared with the predictions of various QCD and Monte Carlo models. The strong coupling strength, alpha_s, is determined at each energy by fits of O(alpha_s^2) calculations, as well as matched O(alpha_s^2) and NLLA predictions, to the data. Matching schemes are compared, and the dependence of the results on the choice of the renormalization scale is investigated. The combination of the results using matched predictions gives alpha_s(MZ)=0.1187+{0.0034}-{0.0019}. The strong coupling is also obtained, at lower precision, from O(alpha_s^2) fits of the c.m.s. energy evolution of some of the observables. A qualitative comparison is made between the data and a recent MLLA prediction for mean jet multiplicities.
Overall result for ALPHAS at the Z0 mass from the combination of the ln R-matching results from the observables evolved using a three-loop running expression. The errors shown are total errors and contain all the statistics and systematics.
Weighted mean for ALPHAS at the Z0 mass determined from the energy evolutions of the mean values of the 2-jet cross sections obtained with the JADE and DURHAMschemes and the 3-jet fraction for the JADE, DURHAM and CAMBRIDGE schemes evaluted at a fixed YCUT.. The errors shown are total errors and contain all the statistics and systematics.
Combined results for ALPHA_S from fits of matched predicitions. The first systematic (DSYS) error is the experimental systematic, the second DSYS error isthe hadronization systematic and the third is the QCD scale error. The values of ALPHAS evolved to the Z0 mass using a three-loop evolution are also given.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.
The quasifree $\overrightarrow{\gamma} d\to\pi^0n(p)$ photon beam asymmetry, $\Sigma$, has been measured at photon energies, $E_\gamma$, from 390 to 610 MeV, corresponding to center of mass energy from 1.271 to 1.424 GeV, for the first time. The data were collected in the A2 hall of the MAMI electron beam facility with the Crystal Ball and TAPS calorimeters covering pion center-of-mass angles from 49 to 148$^\circ$. In this kinematic region, polarization observables are sensitive to contributions from the $\Delta (1232)$ and $N(1440)$ resonances. The extracted values of $\Sigma$ have been compared to predictions based on partial-wave analyses (PWAs) of the existing pion photoproduction database. Our comparison includes the SAID, MAID, and Bonn-Gatchina analyses; while a revised SAID fit, including the new $\Sigma$ measurements, has also been performed. In addition, isospin symmetry is examined as a way to predict $\pi^0n$ photoproduction observables, based on fits to published data in the channels $\pi^0p$, $\pi^+n$, and $\pi^-p$.
Photon beam asymmetry Sigma at W= 1.2711 GeV
Photon beam asymmetry Sigma at W= 1.2858 GeV
Photon beam asymmetry Sigma at W= 1.3003 GeV
The analyzing power,$A_{oono}$, and the polarization transfer observables$K_{onno}$,$K_{os''so}$
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
Position 'A' (see text for explanation).
In pp collisions at √ s = 44.7 and 62.3 GeV, where each proton fragments into at least one low- p T, high- x meson or baryon, no correlations between the particle momenta are found for ππ , π K, KK, and p π pairs. The ππ data show a preference for the formation of electrically neutral ππ systems. The KK data show the influence of strangeness conservation. For pp and pΛ final states, the momentum dependence of the correlation ratio R can be described by the scaling variable z = (1 − x 1 )(1 − x 2 ). Small deviations from factorization are discussed.
No description provided.
No description provided.
No description provided.
We report measurements of spin correlations and analyzing powers in He→3(p→, 2p) and He→3(p→, pn) quasielastic scattering as a function of momentum transfer and missing momentum at 197 MeV using a polarized internal target at the Indiana University Cyclotron Facility Cooler Ring. At sufficiently high momentum transfer we find He→3(p→, pn) spin observables are in good agreement with free p−n scattering observables, and therefore that He→3 can serve as a good polarized neutron target. The extracted polarizations of nucleons in He→3 at low missing momentum are consistent with Faddeev calculations.
QUASIELASTIC SCATTERING.