The results of a wire chamber spectrometer experiment studying K ∗ (890) production in the reaction K − p→ K − π + n at 13 GeV are presented. Strong forward structure is observed for | t |< m 2 π in the s -channel density matrix elements and differential cross section. These features are similar to those observed in π − p→ϱ 0 n data and are characteristics of π exchange. In contrast in the intermediate, | t | ∼ 0.2 GeV 2 , and large momentum transfer regions K ∗ (890) production is demonstrated by the natural parity ϱ−A 2 exchange contribution.
No description provided.
We have studied backward baryon and meson production in π−p→pπ+π−π− at 8.0 GeV/c using a streamer chamber triggered by the detection of a fast forward proton. Our data sample (1227 events) displays prominent N*ρ and N*f quasi-two-body production. These states are investigated with regard to the peripheral nature of the production mechanism and sequential decay of the excited baryon and meson systems. The quasi-two-body production of N*ρ and N*f intermediate states is consistent with u-channel proton exchange as the dominant production mechanism. In the π+π−π− mass distribution we observe a 3- to 4- standard-deviation enhancement at M3π=1897±17 MeV/c2 with full width at half maximum = 110 ± 82 MeV/c2, but find no but find no evidence for backward A1 or A2 production. We observe Δ++(1232) production in the pπ+ effective mass distribution.
THESE VALUES ASSUME ONLY RHO(11) IS NON-ZERO. VALUES FOR OTHER RHO(MM) ARE QUOTED IN PAPER. SIG ERRORS INCLUDE OVER-ALL NORMALIZATION UNCERTAINTY, BUT NO BACKGROUND CORRECTIONS HAVE BEEN MADE.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
STATISTICAL ERRORS ONLY, NO BACKGROUND CORRECTION.
The reaction π + n → ω 0 p has been studied at 4 GeV/ c giving a total cross section of 313 ± 26 μ b. The sample of about 3500 ω 0 events produced in the forward direction has been used to determine the differential cross section and the spin density matrix elements. The effective trajectory for unnatural parity exchange has been determined by a comparison of ϱ 00 d σ /d t at different energies. A comparison of ϱ 00 d σ /d t has been made with the similar data for ϱ 0 production in this experiment allowing π-B exchange degeneracy and ϱ-ω interference to be investigated. These methods result in an unnatural trajectory consistent with that expected for the B-meson. A further study of ϱ-ω interference has been made by comparing the reactions π + n → ω 0 p and π − p → ω 0 n at similar energies. Our results on ω and ϱ production are combined with data on K ∗0 and K ∗0 production at 4 GeV/ c and an SU(3) sum rule relating the production of these four mesons is shown to be satisfied.
ASSUMING PREDOMINANTLY NUCLEON SPIN FLIP.
No description provided.
No description provided.
Strong evidence is presented for quasi-two-body production of a π + p enhancement with mass 1881±6MeV and width 219±23MeV, recoiling off vector mesons ϱ O and ω from π + p interactions at 7.1 GeV/ c and K * o (890) from K + p interactions at 12 GeV/ c . The most probable J P assignment for this object is 7/2 + , making it a likely candidate for the Regge recurrence of Δ(1236).
JACKSON FRAME.
JACKSON FRAME.
Results are presented for the quasi two-body hypercharge exchange reactions of the type using data from a high statistics bubble chamber experiment. Total and differential cross sections and the momentum transfer dependence of the meson and hyperon resonance single density matrix elements are discussed. Amplitude analyses are performed for the first two reactions. The results are compared with quark model and duality predictions and with those from other related reactions.
No description provided.
No description provided.
No description provided.
A partial-wave analysis has been performed on the (K − π − π + ) system produced in the reaction K − p → K − π − π + p at 10 and 16 GeV/ c . In the Q mass region it is found that the two dominant states, K ∗ π and Kπ, both in 1 + S wave, are produced with different polarisations, helicity being approximately conserved in the t -channel for K ∗ π and in the s -channel for Kπ. This is in contradiction with the assumption that the amplitude can be factorised into “production” and “decay” parts, and hence that the two amplitudes are fully coherent. The phase variation of the two states do not indicate simple resonance behaviour. It is concluded that the Q-mass enhancement is composite.
No description provided.
No description provided.
From a large-statistics π+p experiment at 7.1 GeV/c, data are presented on the reactions π+p→ρ0Δ++(1238) and π+p→ωΔ++(1238). Cross sections, differential cross sections, and vector-meson single-density-matrix elements are presented and a general comparison of the production properties of the two reactions is given. In addition to (ρ,ω)Δ++(1238) production there is also strong evidence for production of a π+p enhancement with mass ∼ 1880 MeV, Γ∼200 MeV, and J≥72 produced in association with the ρ and ω resonances. Detailed properties of this structure are presented and its production mechanism is compared with that of the corresponding Δ(1238) reactions. This state is also observed in the reaction K+p→K*0(890)Δ++(1880) at 12.0 GeV/c, for which data are also presented.
STATISTICAL ERRORS ONLY.
No description provided.
JACKSON FRAME.
Results are presented for the reactions (1) π+n→pπ+π−, (2) π+n→pπ+π−π0, at an incident pion beam momentum of 11.7 GeV/c. Both reactions show considerable resonance production. Reaction (1) is dominated by ρ0 and f0 production and there is evidence for the variation of the ρ00 width with momentum transfer. Decay angular distributions are presented for the dipion system observed in reaction (1). Reaction (2) shows the production of both dipion and tripion resonances and there is evidence for the associated production of\(\mathcal{N}\)-resonances with the dipion resonances.
No description provided.
DN/DT PLOTTED. ALL RESONANCES ARE DEFINED JUST BY MASS CUTS.
RHO0 MASS REGION OF DIPION SYSTEM. NUMERICAL VALUES TAKEN FROM TABLE 6.1 OF THE THESIS BY D. KEMP (DURHAM 1974).
We have done a JP analysis of the low-mass π+ω system, using the reaction π+p→π+ωp at 7.1 GeV/c. We find that the B resonance cannot be JP=0− and must belong to the unnatural-parity series (1+, 2−, 3+,...), regardless of the amount of interference between the B and the background. If we assume that the B does not interfere with the background, we find that all JP states for the resonance are rejected except for 1+. Even if interference effects are allowed in the analysis, a good fit with reasonable parameters is obtained only with the 1+ hypothesis for the B meson. In an appendix, we give relevant theoretical formulas appropriate for a πω system with any number of spin-parity states and arbitrary degrees of interference among them.
TAKING INTO ACCOUNT 0- AND 1+ SMOOTH BACKGROUND UNDER THE B MESON. EVENTS WITH 1.08 < M(PI+ OMEGA) < 1.38 GEV.
The reaction K − p → K − π − π + p has been measured at 25 and 40 GeV/ c at the Serpukhov Proton Accelerator. The production cross section at 25 and 40 GeV/ c as a function of momentum transfer and K ππ mass is presented, and results of the partial-wave analysis of the K ππ system yielding information about Q(1300), K ∗ (1400) and L(1770) mesons are discussed.
No description provided.
K** DEFINED BY 1.30 < M(K PI PI) < 1.54 GEV.
L IS DEFINED AS THE 2- STATE WITH 1.6 < M(K PI PI) < 1.9 GEV.