Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.
No description provided.
No description provided.
No description provided.
Elastic diffraction scattering of π − , K − and p on protons has been measured at 25 and 40 GeV/c at the Serpukhov Proton Accelerator. Differential elastic cross sections and diffraction slopes are presented in the momentum-transfer interval 0.07–0.80 (GeV/ c ) 2 and compared with existing data at lower energies.
No description provided.
No description provided.
No description provided.
Cross sections for inelastic scattering of electrons from hydrogen and deuterium were measured for incident energies from 4.5 to 18 GeV, at scattering angles of 18°, 26°, and 34°, and covering a range of squared four-momentum transfers up to 20 (GeVc)2. Neutron cross sections were extracted from the deuterium data using an impulse approximation. Comparisons with the proton measurements show significant differences between the neutron and proton cross sections.
Axis error includes +- 1/1 contribution (DUE TO ERRORS IN ABOVE CORRECTIONSFOR DEAD-TIME LOSSES, INEFFICIENCIES IN E- IDENTIFICATION).
Results are reported based on a study of 3114 π−p events at 205 GeV/c in the National Accelerator Laboratory 30-in. bubble chamber. The measured π−p total and elastic cross sections are 24.0 ± 0.5 and 3.0 ± 0.3 mb, respectively. The elastic differential cross section has a slope of 9.0 ± 0.7 GeV−2 for 0.03≤−t≤0.6 GeV2. The average charged-particle multiplicity for the inelastic events is 8.02 ± 0.12.
No description provided.
No description provided.
The v and v nucleon total cross-sections have been determined as a function of energy using a sample of 2500 v and 950 v event. The results are compared with predictions of scaling and charge symmetry hypotheses.
Measured charged current total cross section.
Measured charged current total cross section.
The polarization parameter for the reaction π−p→π0n has been measured at five incident been momenta between 1.03 and GeV/c. The results are compared with predictions of recent phase-shift analyses.
.
.
.
Results on the elastic K − π − scattering have been obtained from a study of the K − π − system in 15 000 events of the type K − p→K − π − p π + at a K − beam momentum of 4.25 GeV/ c . The on-mass-shell values of the spherical harmonic moments of the K − π − scattering angular distribution and the K − π − elastic cross section have been obtained by extrapolation to the pion pole. From these values we determined the s- and p-wave phase shifts δ 0 3 and δ 1 3 as a function of the effective mass of the K − π − system between threshold and 1.25 GeV/ c 2 . The value of | δ 0 3 | is smaller than 17° for all mass values and the existence of a p-wave cannot be neglected. At m K − π − = 1.18 GeV/ c 2 there are two solutions for the phase shifts. On the average, the cross section of the K − π − elastic scattering over the region of the effective mass considered amounts to approximately 2.5 mb.
The errors combine statistical and systematical effects.
The errors are statistical.
We have investigated the final states K ∗0 (890)Σ, K ∗0 (890)Σ 0 and K ∗0 (890) Y 1 ∗0 (1385) produced in π − p interactions at 3.93 GeV/ c . We present the differential cross sections and spin density matrix elements for the resonances as functions of momentum transfer, as well as the gL and Σ 0 polarizations. The Σ 0 polarization is found to be positive and maximal. An amplitude analysis is performed for the K ∗ Λ and K ∗ Σ 0 reactions, and it is found that one natural parity transversity amplitude is dominant for the latter.
No description provided.
No description provided.
No description provided.
About 45000 interactions of antiprotons of kinetic energy between 57 and 170 MeV have been measured in a deuterium bubble chamber. Total and annihilation cross-sections have been determined at 9 values of the antiproton energy together with the differential crosssection dσ/dt for scattering events. In spite of the peculiar behaviour of the deuteron target at these low energies a reliable measure of the antiproton-neutron annihilation cross-section has been obtained.
INELASTIC (ANNILATION + CHARGE EXCHANGE), SCATTERING (ELASTIC + INELASTIC) AND TOTAL CROSS SECTIONS. AUTHORS ALSO GIVE TOPOLOGICAL DECOMPOSITION OF THESE CROSS SECTIONS.
SCATTERED ANTIPROTON ANGULAR DISTRIBUTION. THE OPTICAL POINT AT T=0 IS CALCULATED FROM THE TOTAL CROSS SECTION. SEPARATION INTO SCATTERING ON PROTONS AND ON NEUTRONS IS IMPOSSIBLE.
The differential cross sections for KL0p→KS0p scattering are presented in several momentum intervals between 1 and 10 GeVc. The data are strongly peaked in the forward direction, characteristic of a large s-channel helicity-nonflip scattering amplitude in this reaction, and a distinct break in the differential cross section occurs at |t|=0.3 GeV2. The phase of the forward scattering amplitude, φ, is consistent with being independent of momentum. The average value of the phase, φ=−133.9±4.0∘, corresponds to a Regge trajectory α(0)=0.49±0.05 in agreement with the canonical ρ, ω0 Regge intercept, α(0)∼0.5. However, this result disagrees with the Regge trajectory determined from the energy dependence of the forward cross section, α(0)=0.30±0.03, indicating a breaking of the Regge phase-energy relation. Comparisons of KL0p→KS0p and π−p→π0n scattering data reveal substantial differences in the energy dependence of the differential cross sections. Comparisons to KN charge-exchange data then suggest that direct-channel (absorption) effects may explain the differences in πN and KN channels.
No description provided.
No description provided.
No description provided.