We report measurements of the two-photon processes e+e−→e+e−π+π− and e+e−→e+e−K+K−, at an e+e− center-of-mass energy of 29 GeV. In the π+π− data a high-statistics analysis of the f(1270) results in a γγ width Γ(γγ→f)=3.2±0.4 keV. The π+π− continuum below the f mass is well described by a QED Born approximation, whereas above the f mass it is consistent with a QCD-model calculation if a large contribution from the f is assumed. For the K+K− data we find agreement of the high-mass continuum with the QCD prediction; limits on f′(1520) and θ(1720) formation are presented.
Data read from graph. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.
Data read from graph.. Additional overall systematic error 20% not included.. The Q**2 dependence is normalized to unity for the bin centred on Q**2 = 0.
The pion form factor has been measured in the space-like q 2 region 0.014 to 0.26 (GeV/ c ) 2 by scattering 300 GeV pions from the electrons of a liquid hydrogen target. A detailed description is given of the apparatus, data analysis and corrections to the data. The mean square charge radius extracted from the data is model-dependent. We find that a form which includes a realistic description of the form factor phase gives a similar results to the naive pole form, and conclude 〈r 2 π 〉 = 0.438±0.008 fm 2 .
No description provided.
An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).
No description provided.
Proton-antiproton elastic scattering was measured at the centre-of-mass energy s = 630 GeV in the four-momentum transfer range 0.7 ⩽ − t ⩽ 2.2 GeV 2 . The new data confirm our previous results at s = 546 GeV on the presence of a break in the t -distribution at − t ≃ 0.9 GeV 2 which is followed by a shoulder, and extend the momentum transfer range to larger values. The t -dependence of the differential cross section beyond the break is discussed.
Errors contain statistics and acceptance uncertainty.
The inclusive jet cross section has been measured in the UA1 experiment at the CERN p p Collider at centre-of-mass energies √ s = 546 GeV and √ s = 630 eV. The cross sections are found to be consistent with QCD predictions, The observed change in the cross section with the centre-of-mass energy √ s is accounted for in terms of x T scaling.
No description provided.
The spin correlation parameter A oonn and the analyzing powers A oono and A ooon were measured simultaneously, in the energy range 0.5–0.8 GeV and in the angular region 40°–80° CM. The experiment used the polarized proton beam of SATURNE II and the Saclay frozen spin polarized target.
No description provided.
No description provided.
No description provided.
The spin correlation parameter A oonn (pp) and the analyzing power A oono (pp) have been measured in the angular region 45°< θ CM <90° at 0.834, 0.874, 0.934, 0.995 and 1.095 GeV beam kinetic energy using the SATURNE II polarized proton beam incident on the polarized proton target.
No description provided.
No description provided.
No description provided.
The multiplicities per event of π ± and K ± are measured separately for e + e - annihilation into c c , b b , and light quark pairs at E cm=29 GeV. The K ± multiplicity is higher for heavy quark events than for light quark events. The π ± multiplicity and the π ± scaled differential cross section at low x = E beam/ E beam are found to be higher for b b events than for other events.
Numerical values requested from authors. Data given separately for (b bbar), (c cbar) and light quark jets.
Measured multiplicities for (b bbar) jets.
Measured multiplicities for (c cbar) jets.
We report on the first search with virtual photon-photon collisions for narrow, neutral resonances with even C parity in the mass range 4.5<W<19 GeV. The data were obtained via the process e+e−→e+e−γ*γ*→e e−+R with both the scattered e+ and e− detected. We find upper limits (95% confidence level) for the partial decay width of a resonance into two photons, ranging from 50 keV at W=4.5 GeV to 10 MeV at W=19 GeV. These limits constrain theoretical models involving neutral composite bosons.
No description provided.
New data are presented on charged particle multiplicity distributions for non single-diffractive events produced at CM energies s = 200 and 900 GeV . The data were obtained at the CERN antiproton-proton collider operated in a new pulsed mode. The multiplicity distributions are very well described by a negative binomial distribution. The highest energy data show no sign of approaching scaling, confirming our earlier results on the breaking of KNO scaling. The energy variation of the average charged multiplicity can be fitted to a quadratic in ln s or a s 0.13 dependence.
Figure gives uncorrected multiplicity distributions. Here we give the corrected distributions. Data supplied by D. Ward.
Results for multiplicity moments based on negative binomial fit to corrected data. Errors reflect both statistical and systematic effects. Results from earlier data at 546 Gev cm energy are also given.
C moments for corrected data where CQ=<N**Q>/<N>**Q.