We have measured differential cross sections of γ + p → p + η 0 at several energies. The angular distributions show that S 11 production is predominant in the energy range investigated and that the other resonant terms seen in π-production of η are absent or very low. Finally, experimental data are theoretically interpreted and the S 11 parameters deduced.
No description provided.
No description provided.
No description provided.
The reaction e + e − → ω o has been measured by detecting the charged pions of the π + π − π o decay mode of the ω o. A partial decay width of ω o in e + e − : Γ e + e − =0.94±0.18 keV is deduced from this result.
FITTED, BACKGROUND SUBTRACTED, PEAK OMEGA CROSS SECTION, CORRECTED FOR UNOBSERVED DECAYS, IS 1.82 +- 0.34 MUB. TABULATED ASSUMING CENTRAL ENERGY IS 782.6 MEV. VACUUM POLARIZATION AND RADIATIVE CORRECTIONS APPLIED.
None
RELATIVE PRODUCTION OF PION PAIRS WITHOUT RADIATIVE CORRECTIONS.
None
Measured value of the pion form factor
Fitted peak cross section.
Quasielastic e-d scattering measurements were performed up to q 2 = 100 fm −2 . Only the electron was detected. The ratio R= ( d 2 ω d Ω d E′) ed d ω d Ω) ep was measured at the quasielastic peak; the magnetic form factor G M N of the neutron was deduced using the assumption G E N = 0.
No description provided.
CONST(NAME=MU) is the magnetic moment. The magnetic formfarctor (GM) is evaluated ander assumption of GE=0.
None
No description provided.
Two groups of measurements have been made on the elastic scattering of electrons by deuterium; in each case we observed the recoil deuteron instead of the scattered electron. In the first case the spectrometer was set at 45° so that magnetic scattering was unimportant (about 10%) and we deduced the electric form factors of the deuteron. In the second case deuterons were observed at 0°, allowing us to measure directly the magnetic form factor of the deuteron. Form factors of the neutron were deduced from these measurements for the transfer values q2=3, 4, and 5 (F−2). Preliminary results were given in a first paper. Here we also include a description of the experimental setup and discuss relativistic and exchange-current corrections.
No description provided.
No description provided.
No description provided.
We have measured the absolute cross sections of the electron-deuteron scattering at q2=3.5 F−2 and obtained the complete inelastic spectrum. Three points for each spectrum are given with a 4% accuracy. The scattering angles, 60° and 130°, were chosen to allow the separation between electric and magnetic scattering. Calculations of radiative corrections were made in order to permit the comparison of the spectra with the inelastic-scattering theories.
No description provided.
No description provided.
No description provided.
Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.
Axis error includes +- 2./2. contribution (RANDOM ERROR).
Axis error includes +- 2./2. contribution (RANDOM ERROR).
Axis error includes +- 2./2. contribution (RANDOM ERROR).
A determination of the electric and magnetic form factors of the proton has been made by studying the elastic scattering of electrons from a polyethylene target by observation of the recoiling proton at 0° and 30° for values of q2 between 1 and 1.8 F−2. From these measurements we have deduced the charge radius Rc and the magnetic radius Rm of the proton and find equality within the experimental errors (Rc=0.800±0.025 F; Rm=0.810±0.029 F).
No description provided.
No description provided.
No description provided.