The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

3 data tables

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.

Charged multiplicity in symmetric three jet events as function of the opening angle between the low energetic jets, THETA1. Jets are defined from charged and neutral particles using the DURHAM algorithm. The errors shown are statistical only.

Twice the difference of the multiplicity in three jet events and in qqbar events of comparable scale 2(N_3jet-N_qqbar). The three-jet event multiplicity isequal to the data of Fig. 3c), the qqbar-multiplicity is taken from a fit of th e e+e- data corrected for the varying b-quark contribution. This multiplicity can be identified with the multiplicity of a hypothetical gluon-gluon event. Thereis a normalization uncertainty (i.e. a scale independent constant) of the gluon -gluon event multiplicity which should not influence the slope of the gg-multiplicity with scale (see paper). The errors shown are statistical only.


Study of the B(s)0 anti-B(s)0 oscillation frequency using D(s)- lepton+ combinations in Z decays

The ALEPH collaboration Buskulic, D. ; De Bonis, I. ; Decamp, D. ; et al.
Phys.Lett.B 377 (1996) 205-221, 1996.
Inspire Record 417261 DOI 10.17182/hepdata.52362

A lower limit on the oscillation frequency of the B s 0 B s 0 system is obtained from approximately four million hadronic Z decays accumulated using the ALEPH detector at LEP from 1991 to 1995. Leptons are combined with opposite sign D s − candidates reconstructed in seven different decay modes as evidence of semileptonic B s 0 decays. Criteria designed to ensure precise proper time reconstruction select 277D s − ℓ + combinations. The initial state of these B s 0 candidates is determined using an algorithm optimized to efficiently utilise the tagging information available for each event. The limit at 95% confidence level on the B s 0 B s 0 oscillation frequency is Δm s > 6.6 ps −1 . The same data is used to update the measurement of the B s 0 lifetime, τ s = 1.54 −0.13 +0.14 (stat) ± 0.04 (syst) ps.

2 data tables

This result supersedes the previous measurement ( 1.59 +0.17 -0.15 (stat.) +-0.03 (sys.) ps ) presented in reference PL 361B, 221.

No description provided.


Search for new phenomena using single photon events in the DELPHI detector at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 74 (1997) 577-586, 1997.
Inspire Record 415746 DOI 10.17182/hepdata.41128

Data are presented on the reaction e+e− → γ + no other detected particle at centre-of-mass energies of 89.48, 91.26 and 93.08 GeV. The cross-section for this reaction is related directly to the number of light neutrino generations which couple to the Z° boson, and to several other possible phenomena such as the production of excited neutrinos, the production of any invisible ‘X’ particle, and the magnetic moment of the tau neutrino. Based on the observed number of single photon events, the number of light neutrinos that couple to the Z° is measured to be Nv = 2.89 ± 0.38. No evidence is found for anomalous production of energetic single photons, and upper limits at 95% confidence level are determined for excited neutrino production (BR < 4 − 8 × 10−6 depending on its mass), production of an invisible ‘X’ particle (σ, < 0.1 pb for masses below 60 GeV), and the magnetic moment of the tau neutrino (< 5.1 × 10-6 μB).

3 data tables

No description provided.

Limit on an anomalous magnetic moment for tau-neutrino from '1GAMMA + nothing' events. Magnetic moment in Bohr magnetons.

Here UNSPEC is invisible particle.


Search for promptly produced heavy quarkonium states in hadronic Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 69 (1996) 575-584, 1996.
Inspire Record 401612 DOI 10.17182/hepdata.48135

A search has been made for direct production of heavy quarkonium states in more than 3 million hadronic Z0 decays in the 1991–1994 DELPHI data. Prompt J/ψ, ψ(2S) and Υ candidates have been searched for through their leptonic decay modes using criteria based on the kinematics and decay vertex positions. New upperlimits are set at the 90% confidence level for Br(Z0 → (QQ) X)/Br (Z0 → hadrons) for various strong production mechanisms of J/ψ and Υ these range down to 0.9 × 10−4. The limits are set in the presence of a small excess (∼ 1% statistical probability of a background fluctuation) in the sum of candidates from prompt J/ψ, ψ(2S), Υ(1S),Υ(2S) and Υ(3S) relative to the estimated background.

2 data tables

The analysis of hadrons (from X) provides to distinguish of the various decay modes of Z-boson (see text).

No description provided.


Measurement of the average b baryon lifetime and the product branching ratio f (b --> Lambda(b)) x BR (Lambda(b) --> Lambda lepton- anti-neutrino X)

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 69 (1996) 195-214, 1996.
Inspire Record 397395 DOI 10.17182/hepdata.51966

None

1 data table

Charged conjugate state is assumed.


B* production in Z decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 353-362, 1995.
Inspire Record 395026 DOI 10.17182/hepdata.52359

None

2 data tables

No description provided.

No description provided.


Production of strange B baryons decaying into Xi-+ - lepton-+ pairs at LEP

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Z.Phys.C 68 (1995) 541-554, 1995.
Inspire Record 393792 DOI 10.17182/hepdata.52371

None

2 data tables

HERE 'PRODUCTION FRACTION' IS PROBABILITY(BQ --> B-BARYON)*BR(B-BARYON --> XI- LEPTON- X). 'LEPTON' IS E OR MU.

No description provided.


Inclusive pi+-, K+- and (p, anti-p) differential cross-sections at the Z resonance

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 66 (1995) 355-366, 1995.
Inspire Record 382179 DOI 10.17182/hepdata.48315

Inclusive π±, K± and\((p,\bar p)\) differential cross-sections in hadronic decays of the Z have been measured as a function ofz=Phadron/Pbeam, the scaled momentum. The results are based on approximately 520 000 events measured by the ALEPH detector at LEP during 1992. Charged particles are identified by their rate of ionization energy loss in the ALEPH Time Projection Chamber. The position, ξ*, of the peak in the ln(1/z) distribution is determined, and the evolution of the peak position with centre-of-mass energy is compared with the prediction of QCD.

3 data tables

No description provided.

No description provided.

No description provided.


A Study of mean subjet multiplicities in two and three jet hadronic Z0 decays

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 363-376, 1994.
Inspire Record 372997 DOI 10.17182/hepdata.48236

This paper describes an analysis of sub-jet multiplicities, which are expected to be sensitive to the properties of soft gluon radiation, in hadronic decays of theZ0. Two- and three-jet event samples are selected using thek⊥ jet clustering algorithm at a jet resolution scaley1. The mean sub-jet multiplicity as a function of the sub-jet resolution,y0, is determined separately for both event samples by reapplying the same jet algorithm at resolution scalesy0<y1. These measurements are compared with recent perturbative QCD calculations based on the summation of leading and next-to-leading logarithms, and with QCD Monte Carlo models. The analytic calculations provide a good description of the sub-jet multiplicity seen in three- and two-jet mvents in the perturbative region (y0≈y1)), and the measured form of the data is in agreement with the expectation based on coherence of soft gluon radiation. The analysis provides good discrimination between Monte Carlo models, and those with a coherent parton shower are preferred by the data. The analysis suggests that coherence effects are present in the data.

4 data tables

Ratio of multiplicities of sub-jets from 3 and 2 jet samples. Data are corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 3 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

Sub-jet multiplicity for 2 jet sample. Data corrected to the hadron level and have combined statistical and systematic errors.

More…

A Determination of alpha-s (M (Z0)) at LEP using resummed QCD calculations

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 59 (1993) 1-20, 1993.
Inspire Record 354188 DOI 10.17182/hepdata.14427

The strong coupling constant, αs, has been determined in hadronic decays of theZ0 resonance, using measurements of seven observables relating to global event shapes, energy correlatio

7 data tables

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

Data corrected for finite acceptance and resolution of the detector and for intial state photon radiation. No corrections for hadronic effects are applied.. Errors include statistical and systematic uncertainties, added in quadrature.

More…