Measurement of t-tbar production with additional jet activity, including b quark jets, in the dilepton channel using pp collisions at sqrt(s) = 8TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 379, 2016.
Inspire Record 1397174 DOI 10.17182/hepdata.70880

Jet multiplicity distributions in top quark pair (t t-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurement is performed in the dilepton decay channels (e+ e-, mu+ mu-, and e+/- mu-/+). The absolute and normalized differential cross sections for t t-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential t t-bar b and t t-bar b b-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

1 data table match query

Normalized differential ttbar cross sections as a function of pt of the leading additional jet j1 in the event (not coming from the top quark decay products), along with their statistical, systematic, and total uncertainties. The results are presented at the particle level in the full phase space of the ttbar system, corrected for acceptance and branching fractions.


Measurement of the differential cross section for top quark pair production in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 75 (2015) 542, 2015.
Inspire Record 1370682 DOI 10.17182/hepdata.68516

The normalized differential cross section for top quark pair (tt-bar) production is measured in pp collisions at a centre-of-mass energy of 8 TeV at the CERN LHC using the CMS detector in data corresponding to an integrated luminosity of 19.7 inverse femtobarns. The measurements are performed in the lepton + jets (e/mu + jets) and in the dilepton (e+e-, mu+mu-, and e+-mu-+) decay channels. The tt-bar cross section is measured as a function of the kinematic properties of the charged leptons, the jets associated to b quarks, the top quarks, and the tt-bar system. The data are compared with several predictions from perturbative quantum chromodynamics up to approximate next-to-next-to-leading-order precision. No significant deviations are observed relative to the standard model predictions.

1 data table match query

Statistical covariance matrix for the normalized differential tt cross section (from l+jets channel) as a function of the rapidity y of the top quark or antiquark.


Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

2 data tables match query

The differential cross section measurement as a function of the rapidity difference between the two highest pT jets for events with three or more jets.

The differential cross section measurement as a function of the rapidity difference between the two highest pT jets for events with three or more jets.


Measurement of Differential ZZ+Jets Production Cross Sections in pp Collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
CMS-SMP-22-001, 2024.
Inspire Record 2773780 DOI 10.17182/hepdata.145862

Diboson production in association with jets is studied in the fully leptonic final states, pp $\to$ (Z$\gamma^*$)(Z/$\gamma^*$)+jets $\to$ 2$\ell$2$\ell'$+jets, ($\ell,\ell'$ = e or $\mu$) in proton-proton collisions at a center-of-mass energy of 13 TeV. The data sample corresponds to an integrated luminosity of 138 fb$^{-1}$ collected with the CMS detector at the LHC. Differential distributions and normalized differential cross sections are measured as a function of jet multiplicity, transverse momentum $p_\mathrm{T}$, pseudorapidity $\eta$, invariant mass and $\Delta\eta$ of the highest-$p_\mathrm{T}$ and second-highest-$p_\mathrm{T}$ jets, and as a function of invariant mass of the four-lepton system for events with various jet multiplicities. These differential cross sections are compared with theoretical predictions that mostly agree with the experimental data. However, in a few regions we observe discrepancies between the predicted and measured values. Further improvement of the predictions is required to describe the ZZ+jets production in the whole phase space.

17 data tables match query

Differential cross sections normalized to the fiducial cross section as a function of the invariant mass of the four-lepton system, in the on-shell ZZ region

Differential cross sections normalized to the fiducial cross section as a function of the number of jets with $p_T > 30$ GeV

Differential cross sections normalized to the fiducial cross section as a function of the $p_T$ of the highest-$p_T$ jet

More…

Studies of W boson plus jets production in p\bar{p} collisions at sqrt(s)=1.96 TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Acharya, Bannanje Sripath ; et al.
Phys.Rev.D 88 (2013) 092001, 2013.
Inspire Record 1221252 DOI 10.17182/hepdata.61813

We present a comprehensive analysis of inclusive W(\to e\nu)+n-jet (n\geq 1,2,3,4) production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV at the Tevatron collider using a 3.7 fb^{-1} dataset collected by the D0 detector. Differential cross sections are presented as a function of the jet rapidities (y), lepton transverse momentum (p_T) and pseudorapidity (\eta), the scalar sum of the transverse energies of the W boson and all jets (H_T), leading dijet p_T and invariant mass, dijet rapidity separations for a variety of jet pairings for p_T-ordered and angular-ordered jets, dijet opening angle, dijet azimuthal angular separations for p_T-ordered and angular-ordered jets, and W boson transverse momentum. The mean number of jets in an event containing a W boson is measured as a function of H_T, and as a function of the rapidity separations between the two highest-p_T jets and between the most widely separated jets in rapidity. Finally, the probability for third-jet emission in events containing a W boson and at least two jets is studied by measuring the fraction of events in the inclusive W+2-jet sample that contain a third jet over a p_T threshold. The analysis employs a regularized singular value decomposition technique to accurately correct for detector effects and for the presence of backgrounds. The corrected data are compared to particle level next-to-leading order perturbative QCD predictions, predictions from all-order resummation approaches, and a variety of leading-order and matrix-element plus parton-shower event generators. Regions of the phase space where there is agreement or disagreement with the data are discussed for the different models tested.

1 data table match query

Differential production cross-section, normalized to the measured inclusive W boson cross-section, as a function of W boson pT for events with one or more jets produced in association with a W boson. First uncertainty is statistical, second uncertainty is systematic.


Diffractive dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 5 (1998) 41-56, 1998.
Inspire Record 469534 DOI 10.17182/hepdata.44302

Differential dijet cross sections have been measured with the ZEUS detector for photoproduction events in which the hadronic final state containing the jets is separated with respect to the outgoing proton direction by a large rapidity gap. The cross section has been measured as a function of the fraction of the photon (x_gamma^OBS) and pomeron (beta^OBS) momentum participating in the production of the dijet system. The observed x_gamma^OBS dependence shows evidence for the presence of a resolved- as well as a direct-photon component. The measured cross section d(sigma)/d(beta^OBS) increases as beta^OBS increases indicating that there is a sizeable contribution to dijet production from those events in which a large fraction of the pomeron momentum participates in the hard scattering. These cross sections and the ZEUS measurements of the diffractive structure function can be described by calculations based on parton densities in the pomeron which evolve according to the QCD evolution equations and include a substantial hard momentum component of gluons in the pomeron.

3 data tables match query

Differential cross section as a function of transverse energy Et of the tw o highest Et jets in event.

Differential cross section as a function of X_gamma=(ET(JET1)*EXP(-ETARAP( JET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*Y*E), the fraction of the photon momentum carried by the highest E_t jets. E is the incident positron energy.

Differential cross section as a function of BETA = (ET(JET1)*EXP(-ETARAP(J ET1)) + ET(JET2)*EXP(-ETARAP(JET2)))/ (2*XPOMERON*E_p), the fraction of the photon momentum carried by the highest E_t jets. E_p is the incident proton energy.


Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 6 (1999) 67-83, 1999.
Inspire Record 472962 DOI 10.17182/hepdata.44219

Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.

2 data tables match query

Differential cross section for two jet production with associated D* production, from channel (1). The quoted cross sections correspond to the centres of the bins. The second systematic error is that associated with the energy scale.

Differential cross section for two jet production with associated D* production, from channel (1). The quoted cross sections correspond to the centres of the bins. The second systematic error is that associated with the energy scale.


Dijet cross-sections in photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Eur.Phys.J.C 1 (1998) 109-122, 1998.
Inspire Record 450085 DOI 10.17182/hepdata.44384

Dijet cross sections are presented using photoproduction data obtained with the ZEUS detector during 1994. These measurements represent an extension of previous results, as the higher statistics allow cross sections to be measured at higher jet transverse energy (ETJ). Jets are identified in the hadronic final state using three different algorithms, and the cross sections compared to complete next-to-leading order QCD calculations. Agreement with these calculations is seen for the pseudorapidity dependence of the direct photon events with ETJ > 6 GeV and of the resolved photon events with ETJ > 11 GeV. Calculated cross sections for resolved photon processes with 6 GeV < ETJ < 11 GeV lie below the data.

1 data table match query

Dijet cross section using the KTCLUS jet alogrithm with a minimum ET for each jet of 8 GeV and a requirement on X(NAME=GAMMA_OBS) to be > 0.75. The second DSYS errors are the correlated uncertainties.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

2 data tables match query

The differential cross section w.r.t. W the virtual photon centre of mass energy from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The charmed structure function F2(C=CHARM) derived from a combination of the K2PI and K4PI data. There are additional systematic uncertainties described in the text of the paper which include the 1.65 PCT luminosity uncertainty and a 9 PCT uncertainty in the charm hadronization fraction to D*+-.


Measurement of inclusive prompt photon photoproduction at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Phys.Lett.B 472 (2000) 175-188, 2000.
Inspire Record 508908 DOI 10.17182/hepdata.43894

First inclusive measurements of isolated prompt photons in photoproduction at the HERA ep collider have been made with the ZEUS detector, using an integrated luminosity of 38.4 pb$^{-1}$. Cross sections are given as a function of the pseudorapidity and the transverse energy ($\eta^\gamma$, \eTg) of the photon, for $\eTg > $ 5 GeV in the $\gamma p$ centre-of-mass energy range 134-285 GeV. Comparisons are made with predictions from Monte Carlo models having leading-logarithm parton showers, and with next-to-leading-order QCD calculations, using currently available parameterisations of the photon structure. For forward $\eta^\gamma$ (proton direction) good agreement is found, but in the rear direction all predictions fall below the data.

1 data table match query

Differential cross sections as a function pseudorapidity for the inclusive photoproduction of isolated photons with transverse energy from 5 to 10 GeV.