Version 2
Investigation of the ϱ-meson resonance with electron-positron colliding beams

Auslander, V.L. ; Budker, G.I. ; Pestov, Ju N. ; et al.
Phys.Lett.B 25 (1967) 433-435, 1967.
Inspire Record 1392895 DOI 10.17182/hepdata.29437

Preliminary results on the determination of the position and shape of the ϱ-meson resonance with electron-positron colliding beams are presented.

2 data tables

Measured value of the pion form factor

Fitted peak cross section.


Study of the process $e^+e^-\to n\bar{n}$ at the VEPP-2000 $e^+e^-$ collider with the SND detector

Achasov, M.N. ; Barnyakov, A.Yu. ; Beloborodov, K.I. ; et al.
Phys.Rev.D 90 (2014) 112007, 2014.
Inspire Record 1321689 DOI 10.17182/hepdata.71416

The process $e^+e^-\to n\bar{n}$ has been studied at the VEPP-2000 $e^+e^-$ collider with the SND detector in the energy range from threshold up to 2 GeV. As a result of the experiment, the $e^+e^-\to n\bar{n}$ cross section and effective neutron form factor have been measured.

2 data tables

The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2011. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor.

The $e^+e^-\to n\bar{n}$ cross section ($\sigma_{n\bar{n}}$) and neutron effective form factor ($F_n$) measured in 2012. The quoted errors are statistical. The systematic error is 17$\%$ for the cross section and 9$\%$ for the form factor. NOTE: corrected an apparent typo in paper for second-last data point (1990 $\to$ 1960) to make the numbers consistent with the plot in Figure 9.


Measurement of the e+e- -> K+K- process cross-section in the energy range s**(1/2) = 1.04 - 1.38 GeV with the SND detector in the experiment at VEPP-2M e+e- collider

Achasov, M.N. ; Beloborodov, K.I. ; Berdyugin, A.V. ; et al.
Phys.Rev.D 76 (2007) 072012, 2007.
Inspire Record 755881 DOI 10.17182/hepdata.51605

The cross section for the process $e^+e^- \to K^+K^-$ was measured in the energy range $\sqrt{s}$ = 1.04--1.38 GeV in the SND experiment at VEPP-2M $e^+e^-$ collider. The measured cross section is described by the Vector Meson Dominance model with contributions from the light vector mesons $\rho$, $\omega$, $\phi$ and their lowest excitations. The mean statistical accuracy of the measurement is 4.4 %, and the systematic uncertainty is 5.2 %.

1 data table

The measured cross section and charged kaon form factor.


The first measurement of the neutron electromagnetic form factors in the timelike region.

Antonelli, A. ; Baldini, R. ; Benasi, P. ; et al.
Nucl.Phys.B 517 (1998) 3-35, 1998.
Inspire Record 471263 DOI 10.17182/hepdata.32681

The electromagnetic form factors of the neutron in the time-like region have been measured for the first time, from the threshold up to q 2 ⋟ 6 GeV 2 . The neutron magnetic form factor turns out to be larger than the proton one; the angular distribution suggests that for the neutron, at variance with the proton case, electric and magnetic form factors could be different. Further measurements are also reported, concerning the proton form factors and the Σ Σ production, together with the multihadronic cross section and the J / Γ branching ratio into n n .

3 data tables

The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The SQRT(S) values with (C=NOMIN) and (C=SHIFT) correspond to the nominal energy and shifted energy analysis (see text of paper for details).

The uncertainty on the evaluated cross section is given by the quadratic combination of the following terms: the statistical uncertainty on the number of events, the statistical and systematic uncertainty on the luminosity (about 6PCT), the systematic uncertainty on the efficiency evaluation, dominated by the scanning efficiency contribution (about 15PCT). The NEUTRON formfactor value are calculated in two hypotheses: GE = GM and GE = 0.

The uncertainty on the evaluated cross section is given by the quadratic combination of the statistical and systematic uncertainties.


Measurements of elastic electron - proton scattering at large momentum transfer

Sill, A.F. ; Arnold, R.G. ; Bosted, Peter E. ; et al.
Phys.Rev.D 48 (1993) 29-55, 1993.
Inspire Record 341324 DOI 10.17182/hepdata.22584

Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.

2 data tables

No description provided.

Formfactor scaling assumes (Ge=Gm/mu).


Version 2
Electromagnetic Pion Form-Factor in the Timelike Region

Barkov, L.M. ; Chilingarov, A.G. ; Eidelman, S.I. ; et al.
Nucl.Phys.B 256 (1985) 365-384, 1985.
Inspire Record 221309 DOI 10.17182/hepdata.6886

The pion electromagnetic form factor has been measured at the VEPP-2M collider in the c.m. energy range 360 MeV–1400 MeV with the detectors OLYA and CMD. On the basis of all available data for the pion form factor collected in the timelike region, the following values for ρ-meson parameters were obtained: m ρ = 775.9 ± 1.1 MeV, σ ρ = 150.5 ± 3.0 MeV. The ω-meson branching ratio into π + π − pair, electromagnetic radius of the pion, ππ scattering length in the P-wave and the strong interaction contribution to the muon ( g − 2) value were found to be B ωππ = (2.3 ± 0.4)%, 〈 r π 2 〉 = 0.422 ± 0.013 fm 2 , a 1 1 = 0.033 ± 0.033m π −3 , a H = (68.4 ± 1.1) × 10 −9 .

2 data tables

Experimental data from the OLYA detector

Experimental data from the CMD detector


A STUDY OF e+ e- ANNIHILATION IN THE 1400-MeV TO 2250-MeV ENERGY RANGE WITH THE MAGNETIC DETECTOR DM2 AT DCI

Augustin, J.E. ; Ayach, L. ; Calcaterra, A. ; et al.
LAL-83-21, 1983.
Inspire Record 192321 DOI 10.17182/hepdata.13242

None

5 data tables

ASSUMING ABS(GE)=ABS(GM).

No description provided.

No description provided.

More…

Recent Results of Experiments at VEPP-2M

Sidorov, V. ;
eConf C790823 (1979) 490, 1979.
Inspire Record 149218 DOI 10.17182/hepdata.75440

None

2 data tables

No description provided.

No description provided.


Proton form factor from 0.15 to 0.79 fm-2

Murphy, J.J. ; Shin, Y.M. ; Skopik, D.M. ;
Phys.Rev.C 9 (1974) 2125-2129, 1974.
Inspire Record 97651 DOI 10.17182/hepdata.25062

The absolute electron-proton elastic scattering cross section has been measured by detecting the recoil protons. The proton charge form factor has been extracted for values of the square of the momentum transfer between 0.15 and 0.79 fm−2. The rms charge radius determined from these measurements is 0.81±0.04 fm. [NUCLEAR REACTIONS H1(e,p), E=55−130 MeV, measured σ(E;Ep,θ); deduced charge form factor, rms charge radius.]

11 data tables

No description provided.

No description provided.

No description provided.

More…

Electromagnetic Form-Factors of the Proton at Low Four-Momentum Transfer

Borkowski, F. ; Peuser, P. ; Simon, G.G. ; et al.
Nucl.Phys.B 93 (1975) 461-478, 1975.
Inspire Record 850 DOI 10.17182/hepdata.31992

The 300 MeV electron linear accelerator of Mainz has been used to measure the angular dependence of the electron-proton elastic scattering cross sections at seven different energies for squared four-momentum transfers between 0.13 and 4.7 fm −2 . The proton form factors have been extracted from the cross sections by means of Rosenbluth plots and by fitting parametrized analytical functions directly to the cross sections. The best fit is compared to the data of other laboratories. The previously reported deviations from the dipole fit have been confirmed. From the form factors at q 2 <0.9 fm 2 the proton r.m.s. radius has been determined. A determination of the spectral function of the nucleon isovector form factor G E V in the time-like is obtained using a realistic ϱ resonance.

9 data tables

No description provided.

No description provided.

No description provided.

More…