Structure of the Proton

Chambers, E.E. ; Hofstadter, R. ;
Phys.Rev. 103 (1956) 1454-1463, 1956.
Inspire Record 945003 DOI 10.17182/hepdata.26939

The structure and size of the proton have been studied by means of high-energy electron scattering. The elastic scattering of electrons from protons in polyethylene has been investigated at the following energies in the laboratory system: 200, 300, 400, 500, and 550 Mev. The range of laboratory angles examined has been 30° to 135°. At the largest angles and the highest energy, the cross section for scattering shows a deviation below that expected from a point proton by a factor of about nine. The magnitude and variation with angle of the deviations determine a structure factor for the proton, and thereby determine the size and shape of the charge and magnetic-moment distributions within the proton. An interpretation, consistent at all energies and angles and agreeing with earlier results from this laboratory, fixes the rms radius at (0.77±0.10) ×10−13 cm for each of the charge and moment distributions. The shape of the density function is not far from a Gaussian with rms radius 0.70×10−13 cm or an exponential with rms radius 0.80×10−13 cm. An equivalent interpretation of the experiments would ascribe the apparent size to a breakdown of the Coulomb law and the conventional theory of electromagnetism.

1 data table match query

In the experiment just relative cross sections were measured. The absolute values were ascribed at each energy after multiplying experimental data by a co nstant factor to obtain the best fit with theory assuming the diffuse proton model with charge and magnetic moment rms radii 0.08 fm.. The values in the table are extracted from the graphs (see figs. 6 - 9) byZOV.


Electromagnetic Form Factors of the Proton

Bumiller, F. ; Croissiaux, M. ; Dally, E. ; et al.
Phys.Rev. 124 (1961) 1623-1631, 1961.
Inspire Record 47220 DOI 10.17182/hepdata.26853

This paper reports experimental findings on the Dirac (F1) and Pauli (F2) form factors of the proton. The form factors have been obtained by using the Rosenbluth formula and the method of intersecting ellipses in analyzing the elastic electron-proton scattering cross sections. A range of energies covering the interval 200-1000 Mev for the incident electrons is explored. Scattering angles vary from 35° to 145°. Values as high as q2≅31 f−2 (q=energy−momentumtransfer) are investigated, but form factors can be reliably determined only up to about q2=25 f−2. Splitting of the form factors is confirmed. The newly measured data are in good agreement with earlier Stanford data on the form factors and also with the predictions of a recent theoretical model of the proton. Consistency in determining the values of the form factors at different energies and angles gives support to the techniques of quantum electrodynamics up to q2≅25 f−2. At the extreme conditions of this experiment (975 Mev, 145°) the behavior of the form factors may be exhibiting some anomaly.

1 data table match query

No description provided.


Proton form factors from elastic electron-proton scattering

Janssens, T. ; Hofstadter, R. ; Hughes, E.B. ; et al.
Phys.Rev. 142 (1966) 922-931, 1966.
Inspire Record 49127 DOI 10.17182/hepdata.26698

Absolute measurements of the elastic electron-proton cross section have been made with a precision of about 4% for values of the square of the four-momentum transfer, q2, in the range 6.0 to 30.0 F−2 and for electron scattering angles in the range 45° to 145°. To within the experimental errors, it is found that the charge and magnetic form factors of the proton have a common dependence on q2 when normalized to unity at q2=0, and that an accurate representation of the behavior of the form factor and that of the cross sections themselves can be given in terms of a three-pole approximation to the dispersion theory of nucleon form factors.

1 data table match query

Axis error includes +- 2./2. contribution (RANDOM ERROR).


pi+ Photoproduction from Hydrogen at Laboratory Energies from 589 to 1269 MeV

Ecklund, S.D. ; Walker, R.L. ;
Phys.Rev. 159 (1967) 1195-1209, 1967.
Inspire Record 52284 DOI 10.17182/hepdata.26563

The differential cross section for the reaction γ+p→π++n was measured at 32 laboratory photon energies between 589 and 1269 MeV at the Caltech synchrotron. At each energy, data have been obtained at typically 15π+ angles between 6° and 90° in the center-of-mass (c.m.) system. A magnetic spectrometer was used to detect the π+ photoproduced in a liquid-hydrogen target. Two Cerenkov counters were used to reject background of positrons and protons. The data clearly show the presence of a pole in the production amplitude due to one-pion exchange. Moravcsik fits to the angular distributions, including data from another experiment carried out by Thiessen, are presented. Extrapolation of these fits to the pole gives a value for the pion-nucleon coupling constant of 14.2±1.7, which is consistent with the accepted value. The "second" and "third" pion-nucleon resonances are evident as peaks in the total cross section and as changes in the shape of the angular distributions. At the third resonance, there is evidence for both a D52 and an F52 amplitude. The absence of large variations with energy in the 0° and 180° cross sections implies that the second and third resonances are mostly produced from an initial state with helicity 32.

1 data table match query

No description provided.


Measurement of pi-p Elastic Scattering at 180-degrees

Kormanyos, S.W. ; Krisch, A.D. ; O'Fallon, J.R. ; et al.
Phys.Rev. 164 (1967) 1661-1671, 1967.
Inspire Record 944948 DOI 10.17182/hepdata.51371

We have measured the differential cross section for π−p elastic scattering at 180° in steps of 0.10 GeV/c or less in the region P0=1.6 to 5.3 GeV/c. We detected elastic scattering events, from protons in a liquid H2 target, with a double spectrometer consisting of magnets and scintillation counters in coincidence. The incident π− beam was counted by scintillation counters. The cross section was found to have considerable structure. This may be interpreted as interference between the resonant amplitudes and the nonresonant or background amplitude. Very strong destructive interference occurs around P0=2.15 GeV/c, where the cross section drops almost two orders of magnitude in passing through the N*(2190). Another interesting feature of the data is a large narrow peak in the cross section at P0=5.12 GeV/c, providing firm evidence for the existence of a nucleon resonance with a mass of 3245±10 MeV. This N*(3245) has a full width of less than 35 MeV, which is about 1% of its mass. From this experiment we were able to determine the parity and the quantity χ(J+12) for each N* resonance, where χ is the elasticity and J is the spin of the resonance.

1 data table match query

No description provided.


Pi zero photoproduction from hydrogen between 574 and 1211 MeV

Wolverton, Franklin Bruce ; Walker, Robert Lee ;
RX-320, 1968.
Inspire Record 53365 DOI 10.17182/hepdata.37150

Cross section angular distributions for [...] photoproduction from hydrogen were measured for 28 laboratory photon energies from 574 to 1211 MeV. At most energies, the [...] center of mass angle was varied from 60[degrees] to 170[degrees] in steps of 10[degrees]. A magnetic spectrometer was used to measure the momentum and angle of the recoil proton. A scintillation counter hodoscope with lead convertors was used to detect the presence of at least one of the [...] decay gamma rays. For a majority of the measurements the [...] rates were separated from a contamination of pi pair rates using the difference in their distribution among the gamma counters. For the remainder of the measurements, charged pi pairs were eliminated using veto counters in front of the gamma counters. Internal inconsistency and comparison with other experiments indicate that the veto data are 10 to 15% low near 90[degrees] in the region of 750 MeV. The remainder of the data show good internal consistency and fair agreement with data of other experiments. The results show a peak at 140[degrees] near 1050 MeV which had been expected but not previously measured. Comparison of the backward angle data with that from experiments measuring cross sections very near 180[degrees] indicates either an inconsistency between experiments or a rapid drop in the cross section near 180[degrees] in the region around 800 MeV.

1 data table match query

No description provided.


pi + /- p Backward Scattering Between 1.5 and 3.0 BeV/c

Carroll, A.S. ; Fischer, J. ; Lundby, A. ; et al.
Phys.Rev.Lett. 20 (1968) 607-609, 1968.
Inspire Record 54465 DOI 10.17182/hepdata.897

None

1 data table match query

No description provided.


Photoproduction of negative pions on neutrons at photon energies between 0.2-GeV and 2.0-GeV

The Aachen-Berlin-Bonn-Hamburg-Heidelberg-Muenchen collaboration Hilpert, H.G. ; Lauscher, P. ; Matziolis, M. ; et al.
Nucl.Phys.B 8 (1968) 535-544, 1968.
Inspire Record 56298 DOI 10.17182/hepdata.32389

Total and differenial cross sections of the reaction γ +n→p+ π − have been determined for photon-energies between 0.2 and 2.0 GGeV. Below 500 MeV the differential cross sections are compared with theoretical predictions derived from fixed-momentum-transfer dispersion relations.

1 data table match query

Axis error includes +- 0.0/0.0 contribution (5 TO 8////).


DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

1 data table match query

No description provided.


Pi- photoproduction from deuterium at laboratory energies 600 to 1250 mev

Scheffler, P.E. ; Walden, P.L. ;
Phys.Rev.Lett. 24 (1970) 952-954, 1970.
Inspire Record 62962 DOI 10.17182/hepdata.32219

The differential cross section for the reaction γ+n→π−+p was measured for laboratory photon energies between 600 and 1250 MeV, using a liquid deuterium target. The internal nucleon momentum distribution of the deuteron was used to calculate the major effect of using deuterium as a neutron target. The data show that the amplitude to excite the F15(1688) resonance is small, in agreement with a recent quark-model prediction.

1 data table match query

No description provided.


Charge exchange and production of eta mesons and multiple neutral pions in pi- p reactions between 654 and 1247 mev/c

Bulos, F. ; Lanou, R.E. ; Piper, A.E. ; et al.
Phys.Rev. 187 (1969) 1827-1844, 1969.
Inspire Record 62084 DOI 10.17182/hepdata.5293

An experiment designed to study the π−p total neutral cross section and its breakdown into several channels has been performed at eleven incident pion momenta ranging from 654 to 1247 MeV/c. Angular distributions for the charge exchange π0 and for η0 production are given in terms of Legendre-polynomial expansion coefficients. Forward and backward differential cross sections are presented for the charge-exchange channel and comparisons with recent dispersion-relation predictions for the forward cross section are made.

1 data table match query

No description provided.


Photoproduction of neutral pions from neutrons between 500 and 900 mev

Hemmi, Y. ; Inagaki, T. ; Kikuchi, R. ; et al.
Phys.Lett.B 32 (1970) 137-140, 1970.
Inspire Record 63812 DOI 10.17182/hepdata.28720

The differential cross sections for the γ + n → π O + n reaction have been measured at the photon energies of 500–900 MeV. The ratios, R oo = [ d δ d Ω(γ n → π o n ) ] [ d δ d Ω(γ p → π o p ) ] , have been obtained at the c.m. pion angles of 60 O , 90 O , 105 O , 120 O , and 140 O .

1 data table match query

No description provided.


Backward elastic scattering from 875 to 1580 mev/c

Abillon, J.M. ; Borg, A. ; Crozon, M. ; et al.
Phys.Lett.B 32 (1970) 712-715, 1970.
Inspire Record 63081 DOI 10.17182/hepdata.5883

The differential cross sections for π − p elastic scattering have been measured near 180°, in the momentum range 875–1580 MeV/c. The results are compared with recent phase shift analysis, showing some notable discrepancies.

1 data table match query

No description provided.


Photoproduction of neutral pions on hydrogen at photon energies between 200 and 440 mev

Fischer, G. ; Fischer, H. ; Von Holtey, G. ; et al.
Nucl.Phys.B 16 (1970) 93-101, 1970.
Inspire Record 62733 DOI 10.17182/hepdata.16659

Differential cross sections for neutral-pion photoproduction on hydrogen in the region of the first resonance have been measured by two independent experiments detecting the recoil protons. The results of both measurements have been combined into one set of cross sections covering the photon energy range from 200 to 440 MeV at pion c.m. angles between 50 and 160 degrees.

1 data table match query

No description provided.


Electromagnetic proton form-factors at squared four momentum transfers between 1-GeV/c**2 and 3-GeV/c**2

Bartel, W. ; Busser, F.W. ; Dix, W.R. ; et al.
Phys.Lett.B 33 (1970) 245-248, 1970.
Inspire Record 63047 DOI 10.17182/hepdata.45284

Electron-proton elastic scattering cross sections have been measured at four-momentum transfers between 1.0 and 3.0 (GeV/ c ) 2 and at electron scattering angles between 10° and 20° and at about 86° in the laboratory. The proton electromagnetic form factors G E and G M were determined. The results indicate that G E ( q 2 ) decreases faster with increasing q 2 than G M ( q 2 ).

1 data table match query

Axis error includes +- 2.5/2.5 contribution (Due to counting statisticss, separation of elastic events, beam monitoring, incident energy, scattering angle, proton absorption, solid angle, target length and density).


Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

1 data table match query

No description provided.


Elastic scattering of positive pions on polarized protons between 0.82 and 2.74 gev/c

Albrow, M.G. ; Andersson-Almehed, S. ; Bosnjakovic, B. ; et al.
Nucl.Phys.B 25 (1970) 9-48, 1971.
Inspire Record 68844 DOI 10.17182/hepdata.7102

Polarization and differential cross-section data for elastic scattering of positive pions on protons between 0.82 and 2.74 GeV/ c are presented. A dip in the polarization, at constant u ≈ −0.65 GeV 2 , is observed. The data are compared with published phase-shift analyses.

1 data table match query

No description provided.


Interactions of neutral k mesons in hydrogen

Meisner, G.W. ; Crawford, F.S. ;
Phys.Rev.D 3 (1971) 2553-2560, 1971.
Inspire Record 67874 DOI 10.17182/hepdata.23681

The reaction π−+p→Λ+K0 in the 72-in. hydrogen chamber was used to produce 7220 K0 mesons associated with a visible decay Λ→p+π−. The time dependence and absolute yield of the subsequent strong interactions of K0 and K0 in hydrogen were used to determine all the parameters of the neutral K system, without the assumption of CPT invariance or other assumptions about the weak interactions of neutral K's. From the time distribution of 59 events of the type K¯0+p→hyperon, we find the magnitude of the KS0−KL0 mass difference. We then determine the mixing parameters p, q, p′, q′ of the neutral K system by means of the time dependence and absolute yield of 11 charge-exchange events, K0+p→K++n, and the absolute yield of 49 two-body interactions, K¯0+p→hyperon+pion. The results are consistent with CPT invariance and with values of the mixing parameters determined by means of weak interactions. We find the Biswas ratio R≡σ(KLp→KSp)σ(KLp→hyperon) to be R=0.41±0.13 averaged over KL momenta from about 200 to 600 MeVc. This agrees with solution I of Kim and with the results of Kadyk et al. Our absolute yields for K¯0+p→hyperon+pion are in good agreement with the predictions of charge independence and the measured rates for K−+p→hyperon+pion. For the front-back asymmetry of the Λ in K¯0+p→Λ+π+, we find (F−B)(F+B)=−0.48±0.18, indicating that the P wave cannot be neglected relative to the S wave in our momentum range.

1 data table match query

TOTAL NUMBER EVENTS=22.


Proton proton differential cross-sections from 600 to 1800 mev/c

Ryan, B.A. ; Kanofsky, A. ; Devlin, T.J. ; et al.
Phys.Rev.D 3 (1971) 1-9, 1971.
Inspire Record 68275 DOI 10.17182/hepdata.23725

Proton-proton elastic differential cross sections have been measured for incident laboratory momenta of 600-1800 MeVc and c.m. angles of 5°-90°. The data span, in a single experiment, the intermediate energy region from isotropic differential cross sections at lower energies to the development of a clear diffraction peak at higher energies. Parameters for phenomenological formulations derived from the experimental results are presented.

1 data table match query

No description provided.


Pi- p elastic scattering near 180 degrees between 600 and 1280 mev/c

Crabb, D.G. ; Keller, R. ; O' Fallon, J.R. ; et al.
Phys.Rev.Lett. 27 (1971) 216-219, 1971.
Inspire Record 68952 DOI 10.17182/hepdata.21460

The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c

1 data table match query

No description provided.


New evidence for the p-11(1470) resonance in pi- p ---> n pi0 below 600 mev

Hauser, M.G. ; Chen, K.W. ; Crean, P.A. ;
Phys.Lett.B 35 (1971) 252-256, 1971.
Inspire Record 69248 DOI 10.17182/hepdata.28485

The differential cross section for π − p → n π o has been measured in detail from 150 to 600 MeV. The backward cross section has a previously unobserved dramatic dip at 425 MeV. We interpret this dip in terms of interference between the P 33 (1236) and the P 11 (1470) resonances. These data provide strong evidence for the adequacy of the phase shift solutions in this energy range.

1 data table match query

From the Kelly compilation.


A study of k+ d interactions from 865 to 1585 mev/c

Hirata, A.A. ; Goldhaber, G. ; Seeger, V.H. ; et al.
Nucl.Phys.B 33 (1971) 525-557, 1971.
Inspire Record 68456 DOI 10.17182/hepdata.33070

We present experimental results on K + d interactions from 865 to 1585 MeV/ c incident beam momentum. We report measurements of several K + d partial cross sections and calculate most of the others using relations derived from isospin conservation and data from other experiments. The most striking feature of the cross section data is the abrupt rise of the total single-pion-production cross section near 1000 MeV/ c . We extract isospin-0 KN partial cross sections and find a rapid quasi-two-body reaction KN → K ∗ N . As in the case of the isospin-1 K + N system, it appears that the structure around 1200 MeV/ c in the total cross section for the isospin-0 K ∗ N system is well reconstructed by the sum of three smoothly varying channel cross sections σ 0 (KN), σ 0 (KN π ) and σ 0 (KN ππ ). We study thereaction KN → K ∗ N near threshold and find that the production and decay angular distributions can be interpreted in terms of t -channel phenomena, specifically a superposition of ω, ϱ, and π exchange. As is true of the isospin-1 KΔ and K ∗ N final states, the isospin-0 K ∗ N state has a behavior near threshold which is not very different from its behavior at much higher energy.

1 data table match query

No description provided.


Polarization in elastic pi- p scattering at 16 momenta between 865 and 2732 mev/c

Albrow, M.G. ; Andersson-Almehed, S. ; Bosnjakovic, B. ; et al.
Nucl.Phys.B 37 (1972) 594-620, 1972.
Inspire Record 75295 DOI 10.17182/hepdata.8091

Polarization distributions and differential cross section data for elastic scattering of negative pions on protons between 865 and 2732 MeV/ c are presented. They are compared with published phase-shift analyses.

1 data table match query

No description provided.


Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

1 data table match query

No description provided.


The total photon deuteron hadronic cross-section in the energy range 0.265-4.215 gev

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Nucl.Phys.B 41 (1972) 445-473, 1972.
Inspire Record 75161 DOI 10.17182/hepdata.32884

The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.

1 data table match query

HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.