Diffractive jet production in deep inelastic e+ p collisions at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 20 (2001) 29-49, 2001.
Inspire Record 539087 DOI 10.17182/hepdata.46939

A measurement is presented of dijet and 3-jet cross sections in low-|t| diffractive deep-inelastic scattering interactions of the type ep -> eXY, where the system X is separated by a large rapidity gap from a low-mass baryonic system Y. Data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 18.0 pb^(-1), are used to measure hadron level single and double differential cross sections for 4<Q^2<80 GeV^2, x_pom<0.05 and p_(T,jet)>4 GeV. The energy flow not attributed to jets is also investigated. The measurements are consistent with a factorising diffractive exchange with trajectory intercept close to 1.2 and tightly constrain the dominating diffractive gluon distribution. Viewed in terms of the diffractive scattering of partonic fluctuations of the photon, the data require the dominance of qqbarg over qqbar states. Soft colour neutralisation models in their present form cannot simultaneously reproduce the shapes and the normalisations of the differential cross sections. Models based on 2-gluon exchange are able to reproduce the shapes of the cross sections at low x_pom values.

4 data tables match query

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Z(NAME=POMERON,C=JETS), the fraction of the hadronic final state energy of the DD system which is contained in the two jets.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of E(NAME=REM,C=GAMMA), the energy sum of all final state hadrons in the photon hemisphere (ETARAP<0) which lie outside the two hightest PT(RF=CM) jet cones.

Average values, over the specified interval, of the differential hadron level dijet cross section as a function of Z(NAME=POMERON,C=JETS), the fraction of the hadronic final state energy of the DD system which is contained in the two jets for the restricted interval X(NAME=POMERON) < 0.01.

More…

High-Q**2 neutral current cross sections in e+ p deep inelastic scattering at s**(1/2) = 318-GeV.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 70 (2004) 052001, 2004.
Inspire Record 636641 DOI 10.17182/hepdata.46282

Cross sections for e^+p neutral current deep inelastic scattering have been measured at a centre-of-mass energy of sqrt{s}=318 GeV with the ZEUS detector at HERA using an integrated luminosity of 63.2 pb^-1. The double-differential cross section, d^2sigma/dxdQ^2, is presented for 200 GeV^2 < Q^2 < 30000 GeV^2 and for 0.005 < x < 0.65. The single-differential cross-sections dsigma/dQ^2, dsigma/dx and dsigma/dy are presented for Q^2 > 200 GeV^2. The effect of Z-boson exchange is seen in dsigma/dx measured for Q^2 > 10000 GeV^2. The data presented here were combined with ZEUS e^+p neutral current data taken at sqrt{s}=300 GeV and the structure function F_2^{em} was extracted. All results agree well with the predictions of the Standard Model.

1 data table match query

The reduced cross section SIG(C=RED) for Q**2 in the range 15000 to 25000 GeV**2 corrected to the electroweak Born level.


Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

The ZEUS collaboration Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 70 (2010) 965-982, 2010.
Inspire Record 875006 DOI 10.17182/hepdata.71338

Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb^-1. The measurement was performed at large values of the photon virtuality, Q^2, between 125 and 20000 GeV^2. The jets were reconstructed with the k_T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E_T,B^jet, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M_jj, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD.

1 data table match query

The measured differential cross-sections $d\sigma/dQ^2$ for inclusive dijet production. The statistical, uncorrelated systematic and jet-energy-scale (ES) uncertainties are shown separately. The multiplicative corrections, ${C_{\rm{QED}}}$, which have been applied to the data and the corrections for hadronisation and ${Z^{0}}$ effects to be applied to the parton-level NLO QCD calculations, ${C_{\rm{hadr}}\cdot C_{\rm{Z^{0}}}}$, are shown in the last two columns.


Inelastic leptoproduction of J / psi mesons at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 41-53, 2002.
Inspire Record 586978 DOI 10.17182/hepdata.46581

The leptoproduction of J/psi mesons is studied in inelastic reactions for four momentum transfers 2<Q^2<100GeV^2. The data were taken with the H1 detector at the electron proton collider HERA and correspond to an integrated luminosity of 77 pb-1. Single differential and double differential cross sections are measured with increased precision compared with previous analyses. New leading order calculations within the non-relativistic QCD factorisation approach including colour octet and colour singlet contributions are compared with the data and are found to give a reasonable description of most distributions. An exception is the shape of the distribution in the J/psi fractional energy, z, which deviates significantly from that of the data. Comparisons with photoproduction are made and the polarisation of the produced J/psi meson is analysed.

1 data table match query

J/PSI leptoproduction differential cross section as a function of COS(THETA*) in the Q**2 range 2 to 6.5 GeV**2.


Measurement and QCD analysis of jet cross sections in deep-inelastic positron proton collisions at s**(1/2) of 300-GeV.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 289-311, 2001.
Inspire Record 535481 DOI 10.17182/hepdata.12548

Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.

1 data table match query

Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.


Measurement of D mesons production in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
JHEP 07 (2007) 074, 2007.
Inspire Record 749371 DOI 10.17182/hepdata.45530

Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Charm has been tagged by reconstructing D^{*+}, D^0, D^{+} and D_s^+ (+ c.c.) charm mesons. The charm hadrons were measured in the kinematic range p_T(D^{*+},D^0,D^{+}) > 3 GeV, p_T(D_s^+)>2 GeV and |\eta(D)| < 1.6 for 1.5 < Q^2 < 1000 GeV^2 and 0.02 < y < 0.7. The production cross sections were used to extract charm fragmentation ratios and the fraction of c quarks hadronising into a particular charm meson in the kinematic range considered. The cross sections were compared to the predictions of next-to-leading-order QCD, and extrapolated to the full kinematic region in p_T(D) and \eta(D) in order to determine the open-charm contribution, F_2^{c\bar{c}}(x,Q^2), to the proton structure function F_2.

1 data table match query

The extracted values of F2(CC) from a combination of the production cross section of D0 (not coming from D*+ decay), D_ and D/S+.


Measurement of D*+- production and the charm contribution to F2 in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Chekanov, S. ; Derrick, M. ; et al.
Eur.Phys.J.C 12 (2000) 35-52, 2000.
Inspire Record 505056 DOI 10.17182/hepdata.43895

The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1<Q^2<600 GeV^2 and 0.02<y<0.7 is 8.31 +- 0.31(stat.) +0.30-0.50(syst.) nb in the kinematic region 1.5< pT(D*+-)<15 GeV and |eta(D*+-)|<1.5. Differential cross sections are consistent with a next-to-leading-order perturbative-QCD calculation when using charm-fragmentation models which take into account the interaction of the charm quark with the proton remnant. The observed cross section is extrapolated to the full kinematic region in pT(D*+-) and eta(D*+-) in order to determine the charm contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the range 10^-4 to 10-3.

2 data tables match query

The differential cross section w.r.t. W the virtual photon centre of mass energy from the K2PI final state. The asymmetric errors are the quadratic sum of the statistical and systematic errors. The statistical errors are also shown separately.

The charmed structure function F2(C=CHARM) derived from a combination of the K2PI and K4PI data. There are additional systematic uncertainties described in the text of the paper which include the 1.65 PCT luminosity uncertainty and a 9 PCT uncertainty in the charm hadronization fraction to D*+-.


Measurement of K0(S), Lambda, anti-Lambda production at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 51 (2007) 1-23, 2007.
Inspire Record 734144 DOI 10.17182/hepdata.45796

The production of the neutral strange hadrons $K^{0}_{S}$, $\Lambda$ and $\bar{\Lambda}$ has been measured in $ep$ collisions at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and charged light hadrons, $\Lambda$ ($\bar{\Lambda}$) asymmetry and polarization have been measured in three kinematic regions: $Q^2 > 25 \gev^2$: $5 < Q^2 < 25 \gev^2$: and in photoproduction ($Q^2 \simeq 0$). In photoproduction the presence of two hadronic jets, each with at least $5 \gev$ transverse energy, was required. The measurements agree in general with Monte Carlo models and are consistent with measurements made at $e^+ e^-$ colliders, except for an enhancement of baryon relative to meson production in photoproduction.

11 data tables match query

Asymmetry in LAMBDA/LAMBDABAR production in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.

LAMBDA/K0S production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.

LAMBDA/K0S production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.

More…

Measurement of beauty production at HERA using events with muons and jets

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 41 (2005) 453-467, 2005.
Inspire Record 676166 DOI 10.17182/hepdata.110966

A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.

1 data table match query

Muons and jets from beauty photoproduction, energy fraction of the exchanged photon entering the hard subprocess


Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Magill, S. ; et al.
Eur.Phys.J.C 61 (2009) 223-235, 2009.
Inspire Record 810120 DOI 10.17182/hepdata.51622

Measurements of the cross sections for charged current deep inelastic scattering in e-p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb-1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dsigma/dQ2, dsigma/dx and dsigma/dy are presented for Q2>200 GeV2. The double-differential cross-section d2sigma/dxdQ2 is presented in the kinematic range 280&lt;Q2&lt;30000 GeV2 and 0.015&lt;x&lt;0.65. The measured cross sections are compared with the predictions of the Standard Model.

6 data tables match query

Values of the differential cross section DSIG/DQ**2 with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

Values of the differential cross section DSIG/DX with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

Values of the differential cross section DSIG/DY with detailed statistical and systematic errors.. The first DSYS is the uncorrelated systematic error and the second is the calorimeter energy scale uncertainty which has significant correlation between cross section bins.

More…