Azimuthal anisotropy of charged particles with transverse momentum up to 100 GeV in PbPb collisions at sqrt(s[NN]) = 5.02 TeV

The CMS collaboration Sirunyan, A.M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 776 (2018) 195-216, 2018.
Inspire Record 1511868 DOI 10.17182/hepdata.77603

The Fourier coefficients v[2] and v[3] characterizing the anisotropy of the azimuthal distribution of charged particles produced in PbPb collisions at sqrt(s[NN]) = 5.02 TeV are measured with data collected by the CMS experiment. The measurements cover a broad transverse momentum range, 1 < pT < 100 GeV. The analysis focuses on pT > 10 GeV range, where anisotropic azimuthal distributions should reflect the path-length dependence of parton energy loss in the created medium. Results are presented in several bins of PbPb collision centrality, spanning the 60% most central events. The v[2] coefficient is measured with the scalar product and the multiparticle cumulant methods, which have different sensitivities to the initial-state fluctuations. The values of both methods remain positive up to pT of about 60-80 GeV, in all examined centrality classes. The v[3] coefficient, only measured with the scalar product method, tends to zero for pT greater than or equal to 20 GeV. Comparisons between theoretical calculations and data provide new constraints on the path-length dependence of parton energy loss in heavy ion collisions and highlight the importance of the initial-state fluctuations.

1 data table match query

The $v_{2}^{high}$ as a function of $v_{2}^{low}$ results from 4-particle cumulant method in PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. Only statistical uncertainties are shown.


Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb--Pb Collisions at $\sqrt{s_{\rm{NN}}} = 2.76$ TeV

The ALICE collaboration Abelev, Betty ; Adam, Jaroslav ; Adamova, Dagmar ; et al.
Phys.Lett.B 720 (2013) 52-62, 2013.
Inspire Record 1127497 DOI 10.17182/hepdata.59944

The inclusive transverse momentum ($p_{\rm T}$) distributions of primary charged particles are measured in the pseudo-rapidity range $|\eta|<0.8$ as a function of event centrality in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}=2.76$ TeV with ALICE at the LHC. The data are presented in the $p_{\rm T}$ range $0.15<p_{\rm T}<50$ GeV/$c$ for nine centrality intervals from 70-80% to 0-5%. The Pb-Pb spectra are presented in terms of the nuclear modification factor $R_{\rm{AA}}$ using a pp reference spectrum measured at the same collision energy. We observe that the suppression of high-$p_{\rm T}$ particles strongly depends on event centrality. In central collisions (0-5%) the yield is most suppressed with $R_{\rm{AA}}\approx0.13$ at $p_{\rm T}=6$-7 GeV/$c$. Above $p_{\rm T}=7$ GeV/$c$, there is a significant rise in the nuclear modification factor, which reaches $R_{\rm{AA}} \approx0.4$ for $p_{\rm T}>30$ GeV/$c$. In peripheral collisions (70-80%), the suppression is weaker with $R_{\rm{AA}} \approx 0.7$ almost independently of $p_{\rm T}$. The measured nuclear modification factors are compared to other measurements and model calculations.

1 data table match query

Nuclear Modification Factor RAA in the centrality interval 50-60%.


Charged-hadron production in $pp$, $p$+Pb, Pb+Pb, and Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5$ TeV with the ATLAS detector at the LHC

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 07 (2023) 074, 2023.
Inspire Record 2601282 DOI 10.17182/hepdata.135676

This paper presents measurements of charged-hadron spectra obtained in $pp$, $p$+Pb, and Pb+Pb collisions at $\sqrt{s}$ or $\sqrt{s_{_\text{NN}}}=5.02$ TeV, and in Xe+Xe collisions at $\sqrt{s_{_\text{NN}}}=5.44$ TeV. The data recorded by the ATLAS detector at the LHC have total integrated luminosities of 25 pb${}^{-1}$, 28 nb${}^{-1}$, 0.50 nb${}^{-1}$, and 3 $\mu$b${}^{-1}$, respectively. The nuclear modification factors $R_{p\text{Pb}}$ and $R_\text{AA}$ are obtained by comparing the spectra in heavy-ion and $pp$ collisions in a wide range of charged-particle transverse momenta and pseudorapidity. The nuclear modification factor $R_{p\text{Pb}}$ shows a moderate enhancement above unity with a maximum at $p_{\mathrm{T}} \approx 3$ GeV; the enhancement is stronger in the Pb-going direction. The nuclear modification factors in both Pb+Pb and Xe+Xe collisions feature a significant, centrality-dependent suppression. They show a similar distinct $p_{\mathrm{T}}$-dependence with a local maximum at $p_{\mathrm{T}} \approx 2$ GeV and a local minimum at $p_{\mathrm{T}} \approx 7$ GeV. This dependence is more distinguishable in more central collisions. No significant $|\eta|$-dependence is found. A comprehensive comparison with several theoretical predictions is also provided. They typically describe $R_\text{AA}$ better in central collisions and in the $p_{\mathrm{T}}$ range from about 10 to 100 GeV.

1 data table match query

Charged-hadron spectrum in the centrality interval 10-20% for Xe+Xe, divided by &#9001;TAA&#9002;. The systematic uncertainties are described in the section 7 of the paper. The total systematic uncertainties are determined by adding the contributions from all relevant sources in quadrature.


Event shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.C 93 (2016) 034916, 2016.
Inspire Record 1384270 DOI 10.17182/hepdata.72304

We report on results obtained with the Event Shape Engineering technique applied to Pb-Pb collisions at $\sqrt{s_\rm{NN}}=2.76$ TeV. By selecting events in the same centrality interval, but with very different average flow, different initial state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient $v_2$ to be almost independent of transverse momentum $p_\rm{T}$, as expected if this effect is due to fluctuations in the initial geometry of the system. Charged hadron, pion, kaon, and proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.

1 data table match query

Ratio of $\rm v_{2}\{{SP}\}$ in the $\rm small-q_{2}^{TPC}$ to unbiased sample, centrality 40-50%.


Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.C 92 (2015) 034911, 2015.
Inspire Record 1347386 DOI 10.17182/hepdata.67151

A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pt and eta of both particles, and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at sqrt(s[NN]) = 2.76 TeV and pPb collisions at sqrt(s[NN]) = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pt and eta. When measured with particles of different pt, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different eta. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very high-multiplicity pPb collisions. The eta-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

1 data table match query

The $p_{T}$-dependent factorization ratio, $r_{2}$, as a function of $p^{a}_{T} - p^{b}_{T}$ for $1.5<p^{trig}_{T}<2.0$ GeV/c for centrality 30-40% in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV.


Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at sqrt(s_{(NN)}) = 2.76 TeV

The ALICE collaboration Aamodt, K. ; Abelev, B. ; Abrahantes Quintana, A. ; et al.
Phys.Rev.Lett. 107 (2011) 032301, 2011.
Inspire Record 900651 DOI 10.17182/hepdata.62026

We report on the first measurement of the triangular $v_3$, quadrangular $v_4$, and pentagonal $v_5$ charged particle flow in Pb-Pb collisions at 2.76 TeV measured with the ALICE detector at the CERN Large Hadron Collider. We show that the triangular flow can be described in terms of the initial spatial anisotropy and its fluctuations, which provides strong constraints on its origin. In the most central events, where the elliptic flow $v_2$ and $v_3$ have similar magnitude, a double peaked structure in the two-particle azimuthal correlations is observed, which is often interpreted as a Mach cone response to fast partons. We show that this structure can be naturally explained from the measured anisotropic flow Fourier coefficients.

1 data table match query

v2{SP,Deltaeta=1.0} (blue open circles).


Higher-order correlations between different moments of two flow amplitudes in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 108 (2023) 055203, 2023.
Inspire Record 2654313 DOI 10.17182/hepdata.144824

The correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV recorded by the ALICE detector at the CERN Large Hadron Collider. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parametrizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions.

1 data table match query

Centrality dependence of ${\rm SC}(3,4)$ in Pb$-$Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV.


Jet-hadron correlations measured relative to the second order event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 101 (2020) 064901, 2020.
Inspire Record 1762358 DOI 10.17182/hepdata.93229

The Quark Gluon Plasma (QGP) produced in ultra relativistic heavy-ion collisions at the Large Hadron Collider (LHC) can be studied by measuring the modifications of jets formed by hard scattered partons which interact with the medium. We studied these modifications via angular correlations of jets with charged hadrons for jets with momenta 20 < $p_{\rm{T}}^{\rm{jet}}$ < 40 GeV/$c$ as a function of the associated particle momentum. The reaction plane fit (RPF) method is used in this analysis to remove the flow modulated background. The analysis of angular correlations for different orientations of the jet relative to the second order event plane allows for the study of the path length dependence of medium modifications to jets. We present the dependence of azimuthal angular correlations of charged hadrons with respect to the angle of the axis of a reconstructed jet relative to the event plane in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV. The dependence of particle yields associated with jets on the angle of the jet with respect to the event plane is presented. Correlations at different angles relative to the event plane are compared through ratios and differences of the yield. No dependence of the results on the angle of the jet with respect to the event plane is observed within uncertainties, which is consistent with no significant path length dependence of the medium modifications for this observable.

1 data table match query

Correlation functions in signal plus background region for $2.0<p_{T}^{assoc}<3.0$ GeV/$c$ for $20<p_T^{jet}<40$ GeV/$c$ full jets of 30-50% centrality in Pb-Pb collisions


Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 742 (2015) 200-224, 2015.
Inspire Record 1315947 DOI 10.17182/hepdata.66784

Measurements of two-particle angular correlations between an identified strange hadron (K0S or Lambda/anti-Lambda) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 inverse nanobarns, were collected at a nucleon-nucleon center-of-mass energy (sqrt(s[NN])) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at sqrt(s[NN]) = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order (v[2]) and third-order (v[3]) anisotropy harmonics of K0S and Lambda/anti-Lambda particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb events, a clear particle species dependence of v[2] and v[3] is observed. For pt < 2 GeV, the v[2] and v[3] values of K0S particles are larger than those of Lambda/anti-Lambda particles at the same pt. This splitting effect between two particle species is found to be stronger in pPb than in PbPb collisions in the same multiplicity range. When divided by the number of constituent quarks and compared at the same transverse kinetic energy per quark, both v[2] and v[3] for K0S particles are observed to be consistent with those for Lambda/anti-Lambda particles at the 10% level in pPb collisions. This consistency extends over a wide range of particle transverse kinetic energy and event multiplicities.

21 data tables match query

The elliptic flow v2(2, $|\Delta\eta| > 2$) extracted for all charged particles as a function of $p_{T}$ from the correlation in the 220 $\leq N_{offline}^{trk}$ < 260 multiplicity class in pPb.

The elliptic flow per constituent quark v2(2, $|\Delta\eta| > 2$)/$n_{q}$ extracted for $K^{0}_{S}$ as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ from the correlation in the 120 $\leq N_{offline}^{trk}$ < 150 multiplicity class in pPb.

The elliptic flow per constituent quark v2(2, $|\Delta\eta| > 2$)/$n_{q}$ extracted for $K^{0}_{S}$ as a function of transverse kinetic energy per constituent quark $KE_{T}/n_{q}$ from the correlation in the 150 $\leq N_{offline}^{trk}$ < 185 multiplicity class in pPb.

More…

Measurement of charged jet suppression n Pb-Pb collisions at sqrt(sNN)=2.76TeV

The ALICE collaboration Abelev, B. ; Adam, J. ; Adamova, D. ; et al.
JHEP 03 (2014) 013, 2014.
Inspire Record 1263194 DOI 10.17182/hepdata.62723

A measurement of the transverse momentum spectra of jets in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV is reported. Jets are reconstructed from charged particles using the anti-$k_{\rm T}$ jet algorithm with jet resolution parameters $R$ of $0.2$ and $0.3$ in pseudo-rapidity $|\eta|<0.5$. The transverse momentum $p_{\rm T}$ of charged particles is measured down to $0.15$ GeV/$c$ which gives access to the low $p_{\rm T}$ fragments of the jet. Jets found in heavy-ion collisions are corrected event-by-event for average background density and on an inclusive basis (via unfolding) for residual background fluctuations and detector effects. A strong suppression of jet production in central events with respect to peripheral events is observed. The suppression is found to be similar to the suppression of charged hadrons, which suggests that substantial energy is radiated at angles larger than the jet resolution parameter $R=0.3$ considered in the analysis. The fragmentation bias introduced by selecting jets with a high $p_{\rm T}$ leading particle, which rejects jets with a soft fragmentation pattern, has a similar effect on the jet yield for central and peripheral events. The ratio of jet spectra with $R=0.2$ and $R=0.3$ is found to be similar in Pb-Pb and simulated PYTHIA pp events, indicating no strong broadening of the radial jet structure in the reconstructed jets with $R<0.3$.

1 data table match query

Nuclear modification factor, constructed as the ratio of jet pT spectra in central and peripheral collisions normalized by the nuclear overlap functions, for charged jets with either R = 0.2 or R = 0.3 and a leading charged particle with pT > 5 GeV. Central collisions are defined to have centrality 10-30% and peripheral collisions are defined to have centrality 50-80%. The two systematic uncertainties correspond to the shape uncertainty and the correlated uncertainty.