Three- and Four-jet Production at Low x at HERA

The H1 collaboration Aaron, F.D. ; Aktas, A. ; Alexa, C. ; et al.
Eur.Phys.J.C 54 (2008) 389-409, 2008.
Inspire Record 767896 DOI 10.17182/hepdata.45429

Three- and four-jet production is measured in deep-inelastic $ep$ scattering at low $x$ and $Q^2$ with the H1 detector using an integrated luminosity of $44{.}2 {\rm pb}^{-1}$. Several phase space regions are selected for the three-jet analysis in order to study the underlying parton dynamics from global topologies to the more restrictive regions of forward jets close to the proton direction. The measurements of cross sections for events with at least three jets are compared to fixed order QCD predictions of ${\mathcal{O}}(\alpha_{\rm s}^2)$ and ${\mathcal{O}}(\alpha_{\rm s}^3) $ and with Monte Carlo simulation programs where higher order effects are approximated by parton showers. A good overall description is provided by the ${\mathcal{O}}(\alpha_{\rm s}^3) $ calculation. Too few events are predicted at the lowest $x \sim 10^{-4}$, especially for topologies with two forward jets. This hints to large contributions at low $x$ from initial state radiation of gluons close to the proton direction and unordered in transverse momentum. The Monte Carlo program in which gluon radiation is generated by the colour dipole model gives a good description of both the three- and the four-jet data in absolute normalisation and shape.

1 data table match query

Differential cross section as a function the jet angle THETA for events with at least 4 jets.


Three Jet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 515 (2001) 17-29, 2001.
Inspire Record 558699 DOI 10.17182/hepdata.46712

Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.

6 data tables match query

Distribution of jet energy fraction X3 = 2E(P=4)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 5 to 100 GeV**2.

Distribution of jet energy fraction X3 = 2E(P=4)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 150 to 5000 GeV**2.

Distribution of jet energy fraction X4 = 2E(P=5)/M(P=4_5_6) in the 3 JET centre-of-mass frame for Q**2 from 5 to 100 GeV**2.

More…

Strangeness Production at low $Q^2$ in Deep-Inelastic $ep$ Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 61 (2009) 185-205, 2009.
Inspire Record 810046 DOI 10.17182/hepdata.45305

The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 &lt; Q^2 &lt; 100 GeV^2 and the inelasticity 0.1 &lt; y &lt; 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

1 data table match query

Value of the LAMBDA/K0S cross section ratio as a function of PT.


Search for single top quark production in ep collisions at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 33 (2004) 9-22, 2004.
Inspire Record 630625 DOI 10.17182/hepdata.46418

A search for single top quark production is performed in e^\pm p collisions at HERA. The search exploits data corresponding to an integrated luminosity of 118.3 pb^-1. A model for the anomalous production of top quarks in a flavour changing neutral current process involving a t-u-gamma coupling is investigated. Decays of top quarks into a b quark and a W boson are considered in the leptonic and the hadronic decay channels of the W. Both a cut-based analysis and a multivariate likelihood analysis are performed to discriminate anomalous top quark production from Standard Model background processes. In the leptonic channel, 5 events are found while 1.31 \pm 0.22 events are expected from the Standard Model background. In the hadronic channel, no excess above the expectation for Standard Model processes is found. These observations lead to a cross section \sigma (ep -> e t X) = 0.29 +0.15 -0.14 pb at \sqrt{s} = 319 GeV. Alternatively, assuming that the observed events are due to a statistical fluctuation, upper limits of 0.55 pb on the anomalous top production cross section and of 0.27 on the t-u-gamma coupling \kappa_{t-u-gamma} are established at the 95% confidence level.

1 data table match query

Cross section from a combination of electron, muon and hadron channels.


Prompt Photons in Photoproduction at HERA

The H1 collaboration Aaron, F.D. ; Aldaya Martin, M. ; Alexa, C. ; et al.
Eur.Phys.J.C 66 (2010) 17-33, 2010.
Inspire Record 835534 DOI 10.17182/hepdata.56856

The production of prompt photons is measured in the photoproduction regime of electron-proton scattering at HERA. The analysis is based on a data sample corresponding to a total integrated luminosity of 340 pb^-1 collected by the H1 experiment. Cross sections are measured for photons with transverse momentum and pseudorapidity in the range 6 < Et < 15 GeV and -1.0 < eta < 2.4, respectively. Cross sections for events with an additional jet are measured as a function of the transverse energy and pseudorapidity of the jet, and as a function of the fractional momenta x_gamma and x_p carried by the partons entering the hard scattering process. The correlation between the photon and the jet is also studied. The results are compared with QCD predictions based on the collinear and on the k_T factorisation approaches.

2 data tables match query

Bin averaged differential cross section for prompt photon plus jet as a function of the photon transverse energy.

Bin averaged differential cross section for prompt photon plus jet as a function of the jet transverse energy.


Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

2 data tables match query

Differential cross section for D*+- production with dijets as a function of M(C=JET2).

Differential cross section for D*+- production with dijets as a function of M(C=JET2).


Measurements of transverse energy flow in deep inelastic-scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 12 (2000) 595-607, 2000.
Inspire Record 503947 DOI 10.17182/hepdata.43951

Measurements of transverse energy flow are presented for neutral current deep-inelastic scattering events produced in positron-proton collisions at HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to 2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in the hadronic centre of mass frame and is studied as a function of Q^2, x, W and pseudorapidity. A comparison is made with QCD based models. The behaviour of the mean transverse energy in the central pseudorapidity region and an interval corresponding to the photon fragmentation region are analysed as a function of Q^2 and W.

32 data tables match query

The inclusive transverse energy flow at a mean X of 0.00008 and mean Q**2 of 3.2 GeV**2 for the low Q**2 sample.

The inclusive transverse energy flow at a mean X of 0.00014 and mean Q**2 of 3.8 GeV**2 for the low Q**2 sample.

The inclusive transverse energy flow at a mean X of 0.00026 and mean Q**2 of 3.9 GeV**2 for the low Q**2 sample.

More…

Measurement of the Proton Structure Function $F_L$ at Low x

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Phys.Lett.B 665 (2008) 139-146, 2008.
Inspire Record 786161 DOI 10.17182/hepdata.45340

A first measurement is reported of the longitudinal proton structure function F_L(x,Q^2) at the ep collider HERA. It is based on inclusive deep inelastic e^+p scattering cross section measurements with a positron beam energy of 27.5 GeV and proton beam energies of 920, 575 and 460 GeV. Employing the energy dependence of the cross section, F_L is measured in a range of squared four-momentum transfers 12 &lt; Q^2 &lt; 90 GeV^2 and low Bjorken x 0.00024 &lt; x &lt; 0.0036. The F_L values agree with higher order QCD calculations based on parton densities obtained using cross section data previously measured at HERA.

9 data tables match query

The measured longitudinal proton structure function FL at Q**2 = 12 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 15 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

The measured longitudinal proton structure function FL at Q**2 = 20 GeV**2 extracted from the combined 920,575 and 450 GeV proton energy data.

More…

Measurement of the Inclusive ep Scattering Cross Section at Low $Q^2$ and x at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Andreev, V. ; et al.
Eur.Phys.J.C 63 (2009) 625-678, 2009.
Inspire Record 817368 DOI 10.17182/hepdata.52425

A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.

1 data table match query

Reduced cross section as measured in the NVX-BST data sample for Q**2 = 8.50 GeV**2.. Additional 1.1 PCT luminosity uncertainty not included in the total error.


Measurement of neutral and charged current cross-sections in positron proton collisions at large momentum transfer

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 609-639, 2000.
Inspire Record 506029 DOI 10.17182/hepdata.43872

The inclusive single and double differential cross-sections for neutral and charged current processes with four-momentum transfer squared Q^2 between 150 and 30,000 GeV2 and with Bjorken x between 0.0032 and 0.65 are measured in e^+ p collisions. The data were taken with the H1 detector at HERA between 1994 and 1997, and they correspond to an integrated luminosity of 35.6 pb^-1. The Q^2 evolution of the parton densities of the proton is tested, yielding no significant deviation from the prediction of perturbative QCD. The proton structure function F_2(x,Q^2) is determined. An extraction of the u and d quark distributions at high x is presented. At high Q^2 electroweak effects of the heavy bosons Z0 and W are observed and found to be consistent with Standard Model expectation.

3 data tables match query

The NC single differential cross section, as a function of Q**2 in the range from 200 to 30000 Gev**2, measured for y < 0.9 and final state electron energy> 11 Gev, and also with the same y cut but after correction for the electron en ergy cut. Also tabulated are the QED corrections to the data, which have alreadybeen applied. The first DSYS error is the uncorrelated systematic error and the second is the correlated systematic error.

The various sources of error (in percent) to the individual NC reduced cross section given in table 4 - see text of paper for more details. DTOT - TOTAL error. DSTA - STATISTICAL error. DUNC - UNCORRELATED SYSTEMATIC error. DUNC(E) - UNCORRELATED SYSTEMATIC error from the positron energy. DUNC(T) - UNCORRELATED SYSTEMATIC error from the polar positron angle. DUNC(H) - UNCORRELATED SYSTEMATIC error from the hadronic energy. DCOR - CORRELATED SYSTEMATIC error. DCOR(E+) - CORRELATED SYSTEMATIC from one sig variation in the positron energy. DCOR(T+) - CORRELATED SYSTEMATIC from one sig variation in the positron polar angle. DCOR(H+) - CORRELATED SYSTEMATIC from one sig variation in the hadron energy. DCOR(N+) - CORRELATED SYSTEMATIC from one sig variation in the noise subtraction. DCOR(B+) - CORRELATED SYSTEMATIC from one sig variation in the background subtraction.

The various sources of error (in percent) to the individual CC double differential cross sections given in table 5 - see text of paper for more details. DTOT - TOTAL error. DSTA - STATISTICAL error. DUNC - UNCORRELATED SYSTEMATIC error. DUNC(H) - UNCORRELATED SYSTEMATIC error from the hadronic energy. DCOR - CORRELATED SYSTEMATIC error. DCOR(V+) - CORRELATED SYSTEMATIC from one sig variationin the cut on the Vap/Vp ratio. DCOR(H+) - CORRELATED SYSTEMATIC from one sig variation in the hadron energy. DCOR(N+) - CORRELATED SYSTEMATIC from one sig variation in the noise subtraction. DCOR(B+) - CORRELATED SYSTEMATIC from one sig variation in the background subtraction.


Measurement of neutral and charged current cross-sections in electron - proton collisions at high Q**2

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 269-288, 2001.
Inspire Record 539088 DOI 10.17182/hepdata.46812

The inclusive e^-p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA, in the range of four-momentum transfer squared Q^2 between 150 and 30000 GeV^2, and Bjorken x between 0.002 and 0.65. The data were taken in 1998 and 1999 with a centre-of-mass energy of 320 GeV and correspond to an integrated luminosity of 16.4 pb^(-1). The data are compared with recent measurements of the inclusive neutral and charged current e^+p cross sections. For Q^2>1000 GeV^2 clear evidence is observed for an asymmetry between e^+p and e^-p neutral current scattering and the generalised structure function xF_3 is extracted for the first time at HERA. A fit to the charged current data is used to extract a value for the W boson propagator mass. The data are found to be in good agreement with Standard Model predictions.

2 data tables match query

CT = The various sources of error (in percent) to the individual NC reduced cross section given in table 6 - see text of paper for more details;DTOT - TOTAL error. DSTA - STATISTICAL error. DUNC - UNCORRELATED SYSTEMATIC error. DUNC(E) - UNCORRELATED SYSTEMATIC error from the positron energy. DUNC(H) - UNCORRELATED SYSTEMATIC error from the hadronic energy. DCOR - CORRELATED SYSTEMATIC error. DCOR(E+) - CORRELATED SYSTEMATIC from one sig variation in the positron energy. DCOR(T+) - CORRELATED SYSTEMATIC from one sig variation in the positron polar angle. DCOR(H+) - CORRELATED SYSTEMATIC from one sig variation in the hadron energy. DCOR(N+) - CORRELATED SYSTEMATIC from one sig variation in the noise subtraction. DCOR(B+) - CORRELATED SYSTEMATIC from one sig variation in the background subtraction.

The various sources of error (in percent) to the individual CC double differential cross sections given in table 7 - see text of paper for more details. DTOT - TOTAL error. DSTA - STATISTICAL error. DUNC - UNCORRELATED SYSTEMATIC error. DUNC(H) - UNCORRELATED SYSTEMATIC error from the hadronic energy. DCOR - CORRELATED SYSTEMATIC error. DCOR(V+) - CORRELATED SYSTEMATIC from one sig variationin the cut on the Vap/Vp ratio. DCOR(H+) - CORRELATED SYSTEMATIC from one sig variation in the hadron energy. DCOR(N+) - CORRELATED SYSTEMATIC from one sig variation in the noise subtraction. DCOR(B+) - CORRELATED SYSTEMATIC from one sig variation in the background subtraction.


Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 545 (1999) 3-20, 1999.
Inspire Record 482053 DOI 10.17182/hepdata.32577

Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.

19 data tables match query

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

More…

Measurement of event shape variables in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 343-356, 2006.
Inspire Record 699835 DOI 10.17182/hepdata.11377

Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.

1 data table match query

Normalised distribution of the squared Jet Mass (RHO), for Q = 14.0 to 16.0 GeV and X = 0.00841 .


Measurement of dijet cross-sections in photoproduction at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 25 (2002) 13-23, 2002.
Inspire Record 581409 DOI 10.17182/hepdata.46764

Dijet cross sections as functions of several jet observables are measured in photoproduction using the H1 detector at HERA. The data sample comprises e^+p data with an integrated luminosity of 34.9 pb^(-1). Jets are selected using the inclusive k_T algorithm with a minimum transverse energy of 25 GeV for the leading jet. The phase space covers longitudinal proton momentum fraction x_p and photon longitudinal momentum fraction x_gamma in the ranges 0.05<x_p<0.6 and 0.1<x_gamma<1. The predictions of next-to-leading order perturbative QCD, including recent photon and proton parton densities, are found to be compatible with the data in a wide kinematical range.

4 data tables match query

Differential ep cross section for dijet production as a function of the average transverse energy the two jets.

Differential ep cross section for dijet production as a function of the maximum transverse energy the leading jet.

Differential ep cross section for dijet production as a function of the average pseudorapidity the two jets in two transverse energy regions and in the Y region 0.1 to 0.5.

More…

Measurement of dijet cross-sections in photoproduction and photon structure

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 483 (2000) 36-48, 2000.
Inspire Record 524764 DOI 10.17182/hepdata.46938

The production of hard di-jet events in photoproduction at HERA is dominated by resolved photon processes in which a parton in the photon with momentum fraction x_gamma is scattered from a parton in the proton. These processes are sensitive to the quark and gluon content of the photon. The differential di-jet cross-section dsigma/dlog(x_gamma) is presented here, measured in tagged photoproduction at HERA using data taken with the H1 detector, corresponding to an integrated luminosity of 7.2 pb^(-1). Using a restricted data sample at high transverse jet energy, E_(T,jet)>6 GeV, the effective parton density f_gamma,eff(x_gamma) = [q(x_gamma) + bar(q)(x_gamma) +9/4g(x_gamma)] in the photon in leading order QCD is measured down to x_gamma=0.05 from which the gluon density in the photon is derived.

1 data table match query

The di-jet photoproduction cross section for ET > 6 GeV after pedestal energy subtraction.


Measurement of dijet cross sections in e p interactions with a leading neutron at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 41 (2005) 273-286, 2005.
Inspire Record 669251 DOI 10.17182/hepdata.46199

Measurements are reported of the production of dijet events with a leading neutron in ep interactions at HERA. Differential cross sections for photoproduction and deep inelastic scattering are presented as a function of several kinematic variables. Leading order QCD simulation programs are compared with the measurements. Models in which the real or virtual photon interacts with a parton of an exchanged pion are able to describe the data. Next-to-leading order perturbative QCD calculations based on pion exchange are found to be in good agreement with the measured cross sections. The fraction of leading neutron dijet events with respect to all dijet events is also determined. The dijet events with a leading neutron have a lower fraction of resolved photon processes than do the inclusive dijet data.

3 data tables match query

Differential e p photoproduction cross section as a function of the jet transverse energy.

Differential e p DIS cross section as a function of the jet transverse energy.

Ratio of cross section for dijet production with a leading neutron to that for inclusive dijet production as a function of the jet transverse energy.


Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 47 (2006) 597-610, 2006.
Inspire Record 716144 DOI 10.17182/hepdata.45700

A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.

1 data table match query

Ratio of BOTTOM to inclusive cross sections.


Measurement of charged particle transverse momentum spectra in deep inelastic scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Nucl.Phys.B 485 (1997) 3-24, 1997.
Inspire Record 424463 DOI 10.17182/hepdata.44710

Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x_B and Q2 using the H1 detector at the ep collider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

1 data table match query

Charged particle PTMAX distribution in the pseudorapidity interval 0.5 to 1.5.


Measurement of beauty production at HERA using events with muons and jets

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 41 (2005) 453-467, 2005.
Inspire Record 676166 DOI 10.17182/hepdata.110966

A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data were collected with the H1 detector at the HERA collider in the years 1999-2000. Events are selected by requiring the presence of jets and muons in the final state. Both the long lifetime and the large mass of b-flavoured hadrons are exploited to identify events containing beauty quarks. Differential cross sections are measured in photoproduction, with photon virtualities Q^2 < 1 GeV^2, and in deep inelastic scattering, where 2 < Q^2 < 100 GeV^2. The results are compared with perturbative QCD calculations to leading and next-to-leading order. The predictions are found to be somewhat lower than the data.

1 data table match query

Muons and jets from beauty photoproduction, energy fraction of the exchanged photon entering the hard subprocess


Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA

The H1 collaboration Aaron, F.D. ; Alexa, C. ; Alimujiang, K. ; et al.
Eur.Phys.J.C 68 (2010) 381-399, 2010.
Inspire Record 841764 DOI 10.17182/hepdata.56005

The production of leading neutrons, where the neutron carries a large fraction x_L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb^{-1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 < Q^2 < 100 GeV^2, Bjorken scaling variable 1.5x10^{-4} < x < 3x10^{-2}, longitudinal momentum fraction 0.32 < x_L < 0.95 and neutron transverse momentum p_T < 0.2 GeV. The leading neutron structure function, F_2^{LN(3)}(Q^2,x,x_L), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q^2, x and x_L. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function.

1 data table match query

The semi-inclusive leading neutron structure function for Q**2.


Measurement of Feynman-$x$ Spectra of Photons and Neutrons in the Very Forward Direction in Deep-Inelastic Scattering at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 74 (2014) 2915, 2014.
Inspire Record 1288065 DOI 10.17182/hepdata.64481

Measurements of normalised cross sections for the production of photons and neutrons at very small angles with respect to the proton beam direction in deep-inelastic $ep$ scattering at HERA are presented as a function of the Feynman variable $x_F$ and of the centre-of-mass energy of the virtual photon-proton system $W$. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $131 \mathrm{pb}^{-1}$. The measurement is restricted to photons and neutrons in the pseudorapidity range $\eta>7.9$ and covers the range of negative four momentum transfer squared at the positron vertex $6<Q^2<100$ GeV$^2$, of inelasticity $0.05<y<0.6$ and of $70<W<245 $GeV. To test the Feynman scaling hypothesis the $W$ dependence of the $x_F$ dependent cross sections is investigated. Predictions of deep-inelastic scattering models and of models for hadronic interactions of high energy cosmic rays are compared to the measured cross sections.

4 data tables match query

The fraction of DIS events with forward photons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

The fraction of DIS events with forward neutrons. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

Normalised cross sections of forward photon production in DIS as a function of XF. For each measurement, the statistical, the uncorrelated systematic uncertainties and the bin-to-bin correlated systematic uncertainties due to the FNC absolute energy scale (EFNC), the measurement of the particle impact position in the FNC (XYFNC) and the model dependence of the data correction (model) are given.

More…

Measurement of Exclusive $\pi^{+}\pi^{-}$ and $\rho^0$ Meson Photoproduction at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Baty, A. ; et al.
Eur.Phys.J.C 80 (2020) 1189, 2020.
Inspire Record 1798511 DOI 10.17182/hepdata.102569

Exclusive photoproduction of $\rho^0(770)$ mesons is studied using the H1 detector at the $ep$ collider HERA. A sample of about 900000 events is used to measure single- and double-differential cross sections for the reaction $\gamma p \to \pi^{+}\pi^{-}Y$. Reactions where the proton stays intact (${m_Y{=}m_p}$) are statistically separated from those where the proton dissociates to a low-mass hadronic system ($m_p{<}m_Y{<}10$ GeV). The double-differential cross sections are measured as a function of the invariant mass $m_{\pi\pi}$ of the decay pions and the squared $4$-momentum transfer $t$ at the proton vertex. The measurements are presented in various bins of the photon-proton collision energy $W_{\gamma p}$. The phase space restrictions are $0.5 < m_{\pi\pi} < 2.2$ GeV, ${\vert t\vert < 1.5}$ GeV${}^2$, and ${20 < W_{\gamma p} < 80}$ GeV. Cross section measurements are presented for both elastic and proton-dissociative scattering. The observed cross section dependencies are described by analytic functions. Parametrising the $m_{\pi\pi}$ dependence with resonant and non-resonant contributions added at the amplitude level leads to a measurement of the $\rho^{0}(770)$ meson mass and width at $m_\rho = 770.8\ {}^{+2.6}_{-2.7}$ (tot) MeV and $\Gamma_\rho = 151.3\ {}^{+2.7}_{-3.6}$ (tot) MeV, respectively. The model is used to extract the $\rho^0(770)$ contribution to the $\pi^{+}\pi^{-}$ cross sections and measure it as a function of $t$ and $W_{\gamma p}$. In a Regge asymptotic limit in which one Regge trajectory $\alpha(t)$ dominates, the intercept $\alpha(t{=}0) = 1.0654\ {}^{+0.0098}_{-0.0067}$ (tot) and the slope $\alpha^\prime(t{=}0) = 0.233\ {}^{+0.067 }_{-0.074 }$ (tot) GeV${}^{-2}$ of the $t$ dependence are extracted for the case $m_Y{=}m_p$.

16 data tables match query

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons, in bins of the photon-proton energy $W$. The cross section is defined as the integral of the relativistic Breit Wigner resonance in the dipion mass over the range $2m_\pi<m_{\pi\pi}<1.53$ GeV. The tabulated cross sections are $\gamma p$ cross sections but can be converted to $ep$ cross sections using the effective photon flux $\Phi_{\gamma/e}$.

Elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction off protons in bins of the photon-proton energy $W$ --- statistical correlations coefficients $\rho_{ij}$ only. Only one half of the (symmetric) matrix is stored. Bins are identified by their global bin number.

Fit of elastic ($m_Y=m_p$) and proton-dissociative ($1<m_Y<10$ GeV) $\rho^0(770)$ photoproduction cross sections off protons as a function of energy. Parameters with subscript "el" and "pd" correspond to elastic and proton-dissociative cross sections, respectively.

More…

Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

The H1 collaboration Alexa, C. ; Andreev, V. ; Baghdasaryan, A. ; et al.
Eur.Phys.J.C 73 (2013) 2406, 2013.
Inspire Record 1217865 DOI 10.17182/hepdata.62615

Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5<Q (2)<100 GeV(2), and small values of Bjorken-x, 10(−4)<x<10(−2). The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (η (∗)) and transverse momentum ( ) in the range 0<η (∗)<5 and in bins of x and Q (2). The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

1 data table match query

Charged particle density as a function of PT in the pseudorapidity region 0-1.5 for fixed Q**2 and X intervals in the HCM frame.


Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 48 (2006) 715-748, 2006.
Inspire Record 718190 DOI 10.17182/hepdata.45892

A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|&lt;1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.

11 data tables match query

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the Minimum Bias data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

Details of systematic errors from the complete ('all') data sample taken in 1997. D_UNC ==> uncorrelated systematic error. D_LAR ==> LAr hadronic energy scale. D_ELE ==> SPACAL electromagnetic energy scale. D_THETA ==> scattered electron angle. D_NOISE ==> calorimeter noise treatment. D_XPOM ==> reweighting the simulation in X(pomeron). D_BETA ==> reweighting the simulation in BETA. D_BG ==> background subtraction. D_PLUG ==> plug energy scale. Q**2 ==> reweighting the simulation in Q**2. SPA ==> SPACAL hadromic energy scale.

More…

Measurement and QCD analysis of jet cross sections in deep-inelastic positron proton collisions at s**(1/2) of 300-GeV.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 19 (2001) 289-311, 2001.
Inspire Record 535481 DOI 10.17182/hepdata.12548

Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.

1 data table match query

Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.