Azimuthally anisotropic emission of low-momentum direct photons in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 94 (2016) 064901, 2016.
Inspire Record 1394895 DOI 10.17182/hepdata.143116

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured 2nd and 3rd order Fourier coefficients of the azimuthal distributions of direct photons emitted at midrapidity in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV for various collision centralities. Combining two different analysis techniques, results were obtained in the transverse momentum range of $0.4<p_{T}<4.0$ GeV/$c$. At low $p_T$ the second-order coefficients, $v_2$, are similar to the ones observed in hadrons. Third order coefficients, $v_3$, are nonzero and almost independent of centrality. These new results on $v_2$ and $v_3$, combined with previously published results on yields, are compared to model calculations that provide yields and asymmetries in the same framework. Those models are challenged to explain simultaneously the observed large yield and large azimuthal anisotropies.

0 data tables match query

Scaling properties of azimuthal anisotropy in Au + Au and Cu + Cu collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 162301, 2007.
Inspire Record 723948 DOI 10.17182/hepdata.143460

Detailed differential measurements of the elliptic flow for particles produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented. Predictions from perfect fluid hydrodynamics for the scaling of the elliptic flow coefficient v_2 with eccentricity, system size and transverse energy are tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1 GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid is observed for all produced particles. For large values of KE_T, the mesons and baryons scale separately. A universal scaling for the flow of both mesons and baryons is observed for the full transverse kinetic energy range of the data when quark number scaling is employed. In both cases the scaling is more pronounced in terms of KE_T rather than transverse momentum.

0 data tables match query

Systematic Study of Azimuthal Anisotropy in Cu$+$Cu and Au$+$Au Collisions at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 92 (2015) 034913, 2015.
Inspire Record 1332240 DOI 10.17182/hepdata.150018

We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ and centrality in Au$+$Au collisions at $\sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{\rm part}$. We observe that $v_2$ divided by eccentricity ($\varepsilon$) monotonically increases with $N_{\rm part}$ and scales as ${N_{\rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_q\cdot\varepsilon\cdot N^{1/3}_{\rm part})$ vs $KE_T/n_q$ for all measured particles.

0 data tables match query

Measurements of mass-dependent azimuthal anisotropy in central $p+$Au, $d+$Au, and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 97 (2018) 064904, 2018.
Inspire Record 1632759 DOI 10.17182/hepdata.141812

We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|\eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV. When taken together with previously published measurements in $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of $v_2(p_{T})$ in $d$$+$Au and $^3$He$+$Au collisions, just as in large nucleus-nucleus ($A$$+$$A$) collisions, and a smaller splitting in $p$$+$Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low $p_T$ ($< 1.5$ GeV/$c$), but fail to describe various features at higher $p_T$. In all systems, the $v_2$ values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark($KE_T/n_q$), which was also seen previously in $A$$+$$A$ collisions.

0 data tables match query

Multi-particle azimuthal correlations for extracting event-by-event elliptic and triangular flow in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Aidala, C. ; Ajitanand, N.N. ; et al.
Phys.Rev.C 99 (2019) 024903, 2019.
Inspire Record 1670164 DOI 10.17182/hepdata.150019

We present measurements of elliptic and triangular azimuthal anisotropy of charged particles detected at forward rapidity $1<|\eta|<3$ in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, as a function of centrality. The multiparticle cumulant technique is used to obtain the elliptic flow coefficients $v_2\{2\}$, $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$, and triangular flow coefficients $v_3\{2\}$ and $v_3\{4\}$. Using the small-variance limit, we estimate the mean and variance of the event-by-event $v_2$ distribution from $v_2\{2\}$ and $v_2\{4\}$. In a complementary analysis, we also use a folding procedure to study the distributions of $v_2$ and $v_3$ directly, extracting both the mean and variance. Implications for initial geometrical fluctuations and their translation into the final state momentum distributions are discussed.

0 data tables match query

Measurement of two-particle correlations with respect to second- and third-order event planes in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 99 (2019) 054903, 2019.
Inspire Record 1658594 DOI 10.17182/hepdata.115992

We present measurements of azimuthal correlations of charged hadron pairs in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions after subtracting an underlying event using a model that includes higher-order azimuthal anisotropy $v_2$, $v_3$, and $v_4$. After subtraction, the away-side ($\Delta\phi\sim\pi)$ of the highest transverse-momentum trigger ($p_T>4$ GeV/$c$) correlations is suppressed compared to that of correlations measured in $p$$+$$p$ collisions. At the lowest associated particle $p_T$, the away-side shape and yield are modified. These observations are consistent with the scenario of radiative-jet energy loss. For the lowest-$p_T$ trigger correlations, an away-side yield exists and we explore the dependence of the shape of the away-side within the context of an underlying-event model. Correlations are also studied differentially versus event-plane angle $\Psi_n$. The angular correlations show an asymmetry when selecting the sign of the trigger-particle azimuthal angle with respect to the $\Psi_2$ event plane. This asymmetry and the measured suppression of the pair yield out of plane is consistent with a path-length-dependent energy loss. No $\Psi_3$ dependence can be resolved within experimental uncertainties.

0 data tables match query

Azimuthal anisotropy of neutral pion production in Au+Au collisions at $\sqrt(s_NN)$ = 200 GeV: Path-length dependence of jet quenching and the role of initial geometry

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 105 (2010) 142301, 2010.
Inspire Record 858845 DOI 10.17182/hepdata.141936

We have measured the azimuthal anisotropy of pi0's for 1 < pT < 18 GeV/c for Au+Au collisions at sqrt s_NN = 200 GeV. The observed anisotropy shows a gradual decrease in 3 < pT < 7 - 10 GeV/c, but remains positive beyond 10 GeV/c. The magnitude of this anisotropy is under-predicted, up to at least 10 GeV/c, by current perturbative QCD (pQCD) energy-loss model calculations. An estimate of the increase in anisotropy expected from initial-geometry modification due to gluon saturation effects and initial-geometry fluctuations is insufficient to account for this discrepancy. Calculations which implement a path length dependence steeper than what is implied by current pQCD energy-loss models, show reasonable agreement with the data.

0 data tables match query