$K^{*0}$ production in Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV from RHIC beam energy scan

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.C 107 (2023) 034907, 2023.
Inspire Record 2642282 DOI 10.17182/hepdata.134956

We report the measurement of $K^{*0}$ meson at midrapidity ($|y|<$ 1.0) in Au+Au collisions at $\sqrt{s_{\rm NN}}$~=~7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse momentum of $K^{*0}$ are presented as functions of collision centrality and beam energy. The $K^{*0}/K$ yield ratios are presented for different collision centrality intervals and beam energies. The $K^{*0}/K$ ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and p+p). The $K^{*0}/K$ ratio follows a similar centrality dependence to that observed in previous RHIC and LHC measurements. The data favor the scenario of the dominance of hadronic re-scattering over regeneration for $K^{*0}$ production in the hadronic phase of the medium.

1 data table match query

$p_{\mathrm T}$-differential yield of $\mathrm{K^{*0}} + \bar{\mathrm{K^{*0}}}$ in AuAu collisions at $\sqrt{s_{\mathrm{NN}}}~=~$19.6 GeV (Multiplicity class 60-80%).


Azimuthal anisotropy measurements of strange and multi-strange hadrons in U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at RHIC

The STAR collaboration Abdallah, Mohamed ; Adam, Jaroslav ; Adamczyk, Leszek ; et al.
Phys.Rev.C 103 (2021) 064907, 2021.
Inspire Record 1852040 DOI 10.17182/hepdata.102643

We present systematic measurements of azimuthal anisotropy for strange and multistrange hadrons ($K^{0}_{s}$, $\Lambda$, $\Xi$, and $\Omega$) and $\phi$ mesons at midrapidity ($|y| <$ 1.0) in collisions of U + U nuclei at $\sqrt{s_{NN}} = 193$ GeV, recorded by the STAR detector at the Relativistic Heavy Ion Collider. Transverse momentum ($p_{\text{T}}$) dependence of flow coefficients ($v_{2}$, $v_{3}$, and $v_{4}$) is presented for minimum bias collisions and three different centrality intervals. Number of constituent quark scaling of the measured flow coefficients in U + U collisions is discussed. We also present the ratio of $v_{n}$ scaled by the participant eccentricity ($\varepsilon_{n}\left\lbrace 2 \right\rbrace$) to explore system size dependence and collectivity in U + U collisions. The magnitude of $v_{2}/\varepsilon_{2}$ is found to be smaller in U + U collisions than that in central Au + Au collisions contradicting naive eccentricity scaling. Furthermore, the ratios between various flow harmonics ($v_{3}/v_{2}^{3/2}$, $v_{4}/v_{2}^{4/2}$) are studied and compared with hydrodynamic and transport model calculations.

30 data tables match query

Flow coefficients $v_{n}$ as a function of transverse kinetic energy $KE_{\text{T}}/n_{q}$ for various particles at mid-rapidity ($|y| <$ 1) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV, scaled by the number of constituent quarks $(n_{q})$ to the power $n/2$. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

Flow coefficients $v_{n}$ as a function of transverse kinetic energy $KE_{\text{T}}/n_{q}$ for various particles at mid-rapidity ($|y| <$ 1) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV, scaled by the number of constituent quarks $(n_{q})$ to the power $n/2$. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

Flow coefficients $v_{n}$ as a function of transverse kinetic energy $KE_{\text{T}}/n_{q}$ for various particles at mid-rapidity ($|y| <$ 1) in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV, scaled by the number of constituent quarks $(n_{q})$ to the power $n/2$. The error bars represent statistical uncertainties. The bands represent point-by-point systematic uncertainties.

More…

Azimuthal transverse single-spin asymmetries of inclusive jets and identified hadrons within jets from polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Abdallah, Mohamed ; Aboona, Bassam ; Adam, Jaroslav ; et al.
Phys.Rev.D 106 (2022) 072010, 2022.
Inspire Record 2087127 DOI 10.17182/hepdata.130778

The STAR Collaboration reports measurements of the transverse single-spin asymmetries, $A_N$, for inclusive jets and identified `hadrons within jets' production at midrapidity from transversely polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV, based on data recorded in 2012 and 2015. The inclusive jet asymmetry measurements include $A_N$ for inclusive jets and $A_N$ for jets containing a charged pion carrying a momentum fraction $z>0.3$ of the jet momentum. The identified hadron within jet asymmetry measurements include the Collins effect for charged pions, kaons and protons, and the Collins-like effect for charged pions. The measured asymmetries are determined for several distinct kinematic regions, characterized by the jet transverse momentum $p_{T}$ and pseudorapidity $\eta$, as well as the hadron momentum fraction $z$ and momentum transverse to the jet axis $j_{T}$. These results probe higher momentum scales ($Q^{2}$ up to $\sim$ 900 GeV$^{2}$) than current, semi-inclusive deep inelastic scattering measurements, and they provide new constraints on quark transversity in the proton and enable tests of evolution, universality and factorization breaking in the transverse-momentum-dependent formalism.

12 data tables match query

Collins asymmetries, $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$, as a function of the charged pion's longitudinal momentum fraction, $z$, in different jet-$p_{T}$ bins. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$ (vertical) and hadron-$z$ (horizontal).

Collins asymmetries, $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$, as a function of the charged pion's longitudinal momentum fraction, $z$, in different jet-$p_{T}$ bins. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$ (vertical) and hadron-$z$ (horizontal).

Collins asymmetries, $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$, as a function of the charged pion's longitudinal momentum fraction, $z$, in different jet-$p_{T}$ bins. The bars show the statistical uncertainties, while the size of the boxes represents the systematic uncertainties on $A_{UT}^{\sin(\phi_{S}-\phi_{H})}$ (vertical) and hadron-$z$ (horizontal).

More…

Beam Energy Dependence of Jet-Quenching Effects in Au+Au Collisions at $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV

The STAR collaboration Adamczyk, L. ; Adams, J.R. ; Adkins, J.K. ; et al.
Phys.Rev.Lett. 121 (2018) 032301, 2018.
Inspire Record 1609067 DOI 10.17182/hepdata.100537

We report measurements of the nuclear modification factor, $R_{ \mathrm{CP}}$, for charged hadrons as well as identified $\pi^{+(-)}$, $K^{+(-)}$, and $p(\overline{p})$ for Au+Au collision energies of $\sqrt{s_{_{ \mathrm{NN}}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-$p_{\mathrm{T}}$ net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ does depend on collision energy, neither the proton nor the anti-proton $R_{ \mathrm{CP}}$ at high $p_{\mathrm{T}}$ exhibit net suppression at any energy. A study of how the binary collision scaled high-$p_{\mathrm{T}}$ yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.

12 data tables match query

Charged hadron RCP for RHIC BES energies. The uncertainty bands at unity on the right side of the plot correspond to the pT-independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy. The vertical uncertainty bars correspond to statistical uncertainties and the boxes to systematic uncertainties.

Identified particle (Pion Plus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

Identified particle (Pion Minus) RCP for RHIC BES energies. The colored shaded boxes describe the point-to-point systematic uncertainties. The uncertainty bands at unity on the right side of the plot correspond to the pT -independent uncertainty in Ncoll scaling with the color in the band corresponding to the color of the data points for that energy.

More…

Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 116 (2016) 112302, 2016.
Inspire Record 1414638 DOI 10.17182/hepdata.72069

We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from $\sqrt{s_{NN}}=7.7$ GeV to 200 GeV. The third harmonic $v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle$, where $\phi_1-\phi_2$ is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs $\Delta\eta = \eta_1-\eta_2$. Non-zero {\vthree} is directly related to the previously observed large-$\Delta\eta$ narrow-$\Delta\phi$ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, $v_3^2\{2\}$ persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, $v_3^2\{2\}$ is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, $v_3^2\{2\}$ for central collisions shows a minimum near {\snn}$=20$ GeV.

1 data table match query

Representative results on $v_3^2\{2\}$ from Au+Au collisions as a function of $\Delta\eta$ for charged hadrons with pT > 0.2 GeV/c and |$\eta$| < 1.


Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 113 (2014) 092301, 2014.
Inspire Record 1280557 DOI 10.17182/hepdata.105915

We report the first measurements of the moments -- mean ($M$), variance ($\sigma^{2}$), skewness ($S$) and kurtosis ($\kappa$) -- of the net-charge multiplicity distributions at mid-rapidity in Au+Au collisions at seven energies, ranging from $\sqrt {{s_{\rm NN}}}$= 7.7 to 200 GeV, as a part of the Beam Energy Scan program at RHIC. The moments are related to the thermodynamic susceptibilities of net-charge, and are sensitive to the proximity of the QCD critical point. We compare the products of the moments, $\sigma^{2}/M$, $S\sigma$ and $\kappa\sigma^{2}$ with the expectations from Poisson and negative binomial distributions (NBD). The $S\sigma$ values deviate from Poisson and are close to NBD baseline, while the $\kappa\sigma^{2}$ values tend to lie between the two. Within the present uncertainties, our data do not show non-monotonic behavior as a function of collision energy. These measurements provide a distinct way of determining the freeze-out parameters in heavy-ion collisions by comparing with theoretical models.

3 data tables match query

The efficiency and centrality bin width corrected $\sigma^2/M$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.

The efficiency and centrality bin width corrected $S\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.

The efficiency and centrality bin width corrected $\kappa\sigma^2$ of the net-charge multiplicity distributions as a function of collision energy for Au+Au collisions. The error bars are statistical and the caps represent systematic errors.


Beam energy dependence of net-$\Lambda$ fluctuations measured by the STAR experiment at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 102 (2020) 024903, 2020.
Inspire Record 1776194 DOI 10.17182/hepdata.113523

The measurements of particle multiplicity distributions have generated considerable interest in understanding the fluctuations of conserved quantum numbers in the Quantum Chromodynamics (QCD) hadronization regime, in particular near a possible critical point and near the chemical freeze-out. We report the measurement of efficiency and centrality bin width corrected cumulant ratios ($C_{2}/C_{1}$, $C_{3}/C_{2}$) of net-$\Lambda$ distributions, in the context of both strangeness and baryon number conservation, as a function of collision energy, centrality and rapidity. The results are for Au + Au collisions at five beam energies ($\sqrt{s_{NN}}$ = 19.6, 27, 39, 62.4 and 200 GeV) recorded with the Solenoidal Tracker at RHIC (STAR). We compare our results to the Poisson and negative binomial (NBD) expectations, as well as to Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and Hadron Resonance Gas (HRG) model predictions. Both NBD and Poisson baselines agree with data within the statistical and systematic uncertainties. The ratios of the measured cumulants show no features of critical fluctuations. The chemical freeze-out temperatures extracted from a recent HRG calculation, which was successfully used to describe the net-proton, net-kaon and net-charge data, indicate $\Lambda$ freeze-out conditions similar to those of kaons. However, large deviations are found when comparing to temperatures obtained from net-proton fluctuations. The net-$\Lambda$ cumulants show a weak, but finite, dependence on the rapidity coverage in the acceptance of the detector, which can be attributed to quantum number conservation.

6 data tables match query

Beam-energy dependence of net-lambda cumulant ratios C2/C1 in most central (0-5%) and peripheral (50-60%). Values are shown with NBD, Poisson and UrQMD predictions.

Beam-energy dependence of net-lambda cumulant ratios C3/C2 in most central (0-5%) and peripheral (50-60%). Values are shown with NBD, Poisson and UrQMD predictions.

Beam-energy dependence of net-lambda, net-proton and net-kaon cumulant ratios C2/C1 in most central (0-5%) collision.

More…

Beam-Energy Dependence of Charge Balance Functions from Au+Au Collisions at RHIC

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 024909, 2016.
Inspire Record 1382600 DOI 10.17182/hepdata.99053

Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.

7 data tables match query

Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.

Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.

Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.

More…

Version 2
Beam-Energy Dependence of Directed Flow of $\Lambda$, $\bar{\Lambda}$, $K^\pm$, $K^0_s$ and $\phi$ in Au+Au Collisions

The STAR collaboration Adamczyk, Leszek ; Adams, Joseph ; Adkins, Kevin ; et al.
Phys.Rev.Lett. 120 (2018) 062301, 2018.
Inspire Record 1618747 DOI 10.17182/hepdata.101750

Rapidity-odd directed flow measurements at midrapidity are presented for $\Lambda$, $\bar{\Lambda}$, $K^\pm$, $K^0_s$ and $\phi$ at $\sqrt{s_{NN}} =$ 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV in Au+Au collisions recorded by the STAR detector at the Relativistic Heavy Ion Collider. These measurements greatly expand the scope of data available to constrain models with differing prescriptions for the equation of state of quantum chromodynamics. Results show good sensitivity for testing a picture where flow is assumed to be imposed before hadron formation and the observed particles are assumed to form via coalescence of constituent quarks. The pattern of departure from a coalescence-inspired sum-rule can be a valuable new tool for probing the collision dynamics.

8 data tables match query

Directed flow slope $dv_1/dy$ as a function of beam energy in 10%–40% central Au+Au collisions.

Directed flow slope $dv_1/dy$ as a function of beam energy in 10%–40% central Au+Au collisions.

Directed flow slope $dv_1/dy$ as a function of beam energy in 10%–40% central Au+Au collisions.

More…

Version 3
Centrality and transverse momentum dependence of $D^0$-meson production at mid-rapidity in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
Phys.Rev.C 99 (2019) 034908, 2019.
Inspire Record 1711377 DOI 10.17182/hepdata.95750

We report a new measurement of $D^0$-meson production at mid-rapidity ($|y|$\,$<$\,1) in Au+Au collisions at ${\sqrt{s_{\rm NN}} = \rm{200\,GeV}}$ utilizing the Heavy Flavor Tracker, a high resolution silicon detector at the STAR experiment. Invariant yields of $D^0$-mesons with transverse momentum $p_{T}$ $\lesssim 9$\,GeV/$c$ are reported in various centrality bins (0--10\%, 10--20\%, 20--40\%, 40--60\% and 60--80\%). Blast-Wave thermal models are used to fit the $D^0$-meson $p_{T}$ spectra to study $D^0$ hadron kinetic freeze-out properties. The average radial flow velocity extracted from the fit is considerably smaller than that of light hadrons ($\pi,K$ and $p$), but comparable to that of hadrons containing multiple strange quarks ($\phi,\Xi^-$), indicating that $D^0$ mesons kinetically decouple from the system earlier than light hadrons. The calculated $D^0$ nuclear modification factors re-affirm that charm quarks suffer large amount of energy loss in the medium, similar to those of light quarks for $p_{T}$\,$>$\,4\,GeV/$c$ in central 0--10\% Au+Au collisions. At low $p_{T}$, the nuclear modification factors show a characteristic structure qualitatively consistent with the expectation from model predictions that charm quarks gain sizable collective motion during the medium evolution. The improved measurements are expected to offer new constraints to model calculations and help gain further insights into the hot and dense medium created in these collisions.

3 data tables match query

$D^0$ invariant yield at mid-rapidity $(|y|<1)$ vs transverse kinetic energy ($m_T -m_0$) for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed black lines depict exponential function fits and the dot-dashed line depicts a power-law function fit to the spectrum in the $60-80\%$ centrality bin.

$D^0$ invariant yield at mid-rapidity $(|y|<1)$ vs transverse kinetic energy ($m_T -m_0$) for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed black lines depict exponential function fits and the dot-dashed line depicts a power-law function fit to the spectrum in the $60-80\%$ centrality bin.

$D^0$ invariant yield at mid-rapidity $(|y|<1)$ vs transverse kinetic energy ($m_T -m_0$) for different centrality classes. Error bars indicate statistical uncertainties and brackets depict systematic uncertainties. Global systematic uncertainties in B.R. are not plotted. Solid and dashed black lines depict exponential function fits and the dot-dashed line depicts a power-law function fit to the spectrum in the $60-80\%$ centrality bin.