Studies of topological distributions of inclusive the three and four jet events in anti-P P collisions at s**(1/2) = 1800-GeV with the D0 detector

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.D 53 (1996) 6000-6016, 1996.
Inspire Record 399364 DOI 10.17182/hepdata.11124

The global topologies of inclusive three-- and four--jet events produced in $\pp$ interactions are described. The three-- and four--jet events are selected from data recorded by the D\O\ detector at the Tevatron Collider operating at a center--of--mass energy of $\sqrt{s} = 1800$ GeV. The measured, normalized distributions of various topological variables are compared with parton--level predictions of tree--level QCD calculations. The parton--level QCD calculations are found to be in good agreement with the data. The studies also show that the topological distributions of the different subprocesses involving different numbers of quarks are very similar and reproduce the measured distributions well. The parton shower Monte Carlo generators provide a less satisfactory description of the topologies of the three-- and four--jet events.

1 data table match query

Errors are statistical only. The estimated systematic uncertainty is 6 PCT. The measured distribution of scaled jets pair masses for the 4-JET events in their center-of-mass system.


Further Properties of High-Mass Multijet Events at the Fermilab Proton-Antiproton Collider

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 4221-4233, 1996.
Inspire Record 418504 DOI 10.17182/hepdata.52862

The properties of high-mass multijet events produced at the Fermilab proton-antiproton collider are compared with leading order QCD matrix element predictions, QCD parton shower Monte Carlo predictions, and the predictions from a model in which events are distributed uniformly over the available multibody phase-space. Multijet distributions corresponding to (4N-4) variables that span the N-body parameter space are found to be well described by the QCD calculations for inclusive three-jet, four-jet, and five-jet events. The agreement between data, QCD Matrix Element calculations, and QCD parton shower Monte Carlo predictions suggests that 2 -> 2 scattering plus gluon radiation provides a good first approximation to the full LO QCD matrix element for events with three, four, or even five jets in the final state.

1 data table match query

Single-body mass fraction distribution FA for two-body systems in 5-jet events.