The pp differential elastic scattering cross section was measured at √s = 1800 GeV, using an improved accelerator luminositydetermination and CDF small angle data in the range of 0.05 ≤ t ≤ 0.2(GeV/c)2. By extrapolating the differential cross sections to t=0 and using the optical theorem we obtain a total cross section of σtot(pp) = 72.0±3.6 mb. This result is preliminary in the sense that we expect to further reduce the systematic error on the optical point.
No description provided.
We report a measurement of the p p total cross section at √ s =1.8 TeV using a luminosity-independent method. Our result is σ T =72.1±3.3 mb ; we also derive the total elastic cross section σ el =16.6±1.6 mb. A value is obtained for the total single diffraction cross section of 11.7±2.3 mb.
No description provided.
No description provided.
We report a measurement of the p p ̄ total cross section at s =1.8 TeV at the Fermilab Tevatron Collider, using the luminosity independent method. Our result is σ T =71.71±2.02 mb. We also obtained values of the total elastic and total inelastic cross sections.
No description provided.
No description provided.
We have measured ρ, the ratio of the real to the imaginary part of the p¯p forward elastic-scattering amplitude, at √s =1.8 TeV. Our result, ρ=0.140±0.069, is compared with extrapolations from lower-energy data based on dispersion relations, and with the UA4 value at √s =546 GeV.
Results of least square's fit to the distribution.
The antiproton-proton small-angle elastic-scattering distribution was measured at\(\sqrt s \) GeV at the Fermilab Tevatron Collider. A fit to the nuclear-scattering distribution in the range 0.065≤|t|≤0.21 (GeV/c)2 givesb=(16.2±0.5±0.5) (GeV/c)−2 for the logarithmic slope parameter. Using the optical theorem and the luminosity from Collider parameters, we obtain σtoto(1+ρ2)1/2 =(61.7±3.7±4.4)mb.
Slope was derived in the t range -0.065 < t < -0.21 (GeV/c)**2.
We have measured $\rho$ , the ratio of the real to the imaginary part of the $p \bar{p}$ forward elastic scattering amplitude, at $\sqrt{s}$ = 1.8 TeV. Our result is $\rho$ = 0.132 $\pm$ 0.056; this can be combined with a previous measurement at the same energy to give $\rho$ = 0.135 $\pm$ 0.044.
The measured value of the ratio of real to imaginary part of the forward scattering amplitude.