Showing 3 of 3 results
We report systematic measurements of bulk properties of the system created in Au+Au collisions at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV recorded by the STAR detector at the Relativistic Heavy Ion Collider (RHIC).The transverse momentum spectra of $\pi^{\pm}$, $K^{\pm}$ and $p(\bar{p})$ are studied at mid-rapidity ($|y| < 0.1$) for nine centrality intervals. The centrality, transverse momentum ($p_T$),and pseudorapidity ($\eta$) dependence of inclusive charged particle elliptic flow ($v_2$), and rapidity-odd charged particles directed flow ($v_{1}$) results near mid-rapidity are also presented. These measurements are compared with the published results from Au+Au collisions at other energies, and from Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV. The results at $\sqrt{s_{\mathrm{NN}}}$ = 14.5 GeV show similar behavior as established at other energies and fit well in the energy dependence trend. These results are important as the 14.5 GeV energy fills the gap in $\mu_B$, which is of the order of 100 MeV,between $\sqrt{s_{\mathrm{NN}}}$ =11.5 and 19.6 GeV. Comparisons of the data with UrQMD and AMPT models show poor agreement in general.
The $p_{T}$ spectra of proton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicated in the legend
The $p_{T}$ spectra of antiproton measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $\pi^{-}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $K^{+}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
The $p_{T}$ spectra of $K^{-}$ measured at midrapidity (|y|<0.1) in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV. Spectra are plotted for nine centrality classes, with some spectra multiplied by a scale factor to improve clarity, as indicatedin the legend
Average $p_{T}$ of $\pi^{+}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $\pi^{-}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $K^{+}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of $K^{-}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$= 14.5 GeV.
Average $p_{T}$ of p as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Average $p_{T}$ of p-bar as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $\pi^{+}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $\pi^{-}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $K^{+}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of $K^{-}$ scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of proton scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
dN/dy of p-bar scaled by 0.5*$N_{part}$ as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Kinetic freeze-out temperature as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Velocity as a function of number of participant for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
The event plane resolution calculated for Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV as a function of centrality.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 10-20% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 20-30% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$ for 30-40% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of transverse momentum $p_{T}$ for six centrality classes, obtained using the $\eta$-sub event plane method in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Inclusive charged particle elliptic flow v2 at mid-pseudorapidity (|y| <1.0) as a function of $p_{T}$-integrated v2($\eta$) for six centrality classes, obtained using the $\eta$-sub event plane method in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
The ratio inclusive charged particle elliptic flow v2 over root-mean-square participant eccentricity $Epart_{2}$ at mid-pseudorapidity as a function of $p_{T}$ for 10–20%, 30–40%, and 50–60% collision centralities in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV.
Summary of centrality bins, average number of participants $N_{part}$, number of binary collisions $N_{coll}$, reaction plane eccentricity eRP, participant eccentricity epart, root-mean-square of the participant eccentricity epart{2}, and transverse area $S_{part}$ from MC Glauber simulations at $\sqrt{s_{NN}}$ = 14.5 GeV.
The inclusive charged particle elliptic flow v2($\eta$-sub) versus pseudorapidity $\eta$ at mid-pseudorapidity for $\sqrt{s_{NN}}$ = 14.5 GeV.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 27.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of $p_{T}$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 39.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 27.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 39.0 GeV for 0–10%, 10–40% and 40–80% centrality intervals.
Rapidity-odd charged particles directed flow v1 as a function of pseudorapidity $\eta$ in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 – 39 GeV for 30-60% centrality intervals.
Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.
The difference in $v_{2}$ between particles (X) and their corresponding antiparticles $\bar{X}$ (see legend) as a function of $\sqrt{s_{NN}}$ for 10%-40% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The difference in $v_{2}$ between protons and antiprotons as a function of $\sqrt{s_{NN}}$ for 0%-10%, 10%-40% and 40%-80% central Au + Au collisions. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The relative difference. The systematic errors are shown by the hooked error bars. The dashed lines in the plot are fits with a power-law function.
The $v_{2}$ difference between protons and antiprotons (and between $\pi^{+}$ and $pi^{-}$) for 10%-40% centrality Au+Au collisions at 7.7, 11.5, 14.5, and 19.6 GeV. The $v_{2}{BBC} results were slightly shifted horizontally.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.
The distribution of observed charge asymmetry from STAR data.
Pion $v_2${2} as a function of observed charge asymmetry.
$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.
The slope parameter r as a function of centrality for collision energy of 200 GeV.
The slope parameter r as a function of centrality for collision energy of 62.4 GeV.
The slope parameter r as a function of centrality for collision energy of 39 GeV.
The slope parameter r as a function of centrality for collision energy of 27 GeV.
The slope parameter r as a function of centrality for collision energy of 19.6 GeV.
The slope parameter r as a function of centrality for collision energy of 11.5 GeV.
The slope parameter r as a function of centrality for collision energy of 7.7 GeV.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.