Showing 1 of 1 results
A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Acceptance for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR1 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR2 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR3 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR4 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for SR5 in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Detector efficiency for best expected CLS SR in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR1 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR2 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR3 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
SR5 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR1 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR2 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR3 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR4 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for SR5 in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Upper limits on signal cross sections and exclusion limits at 95% CL for the best expected SR in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
Minimum branching ratio excluded at 95% CL, assuming no sensitivity for other decay possibilities, in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
The signal region with the best expected CLS value for each signal in the $\tilde{t}_1/\tilde{c}_1-\tilde{\chi}_1^0$ mass plane.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Expected exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$\Delta m$ plane for the stop/scharm pair production scenario.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR1. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR2. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR3. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR4. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Comparison between data and expectation after the background-only fit for the $E_{T}^{miss}$ distribution in SR5. The shaded band indicates detector-related systematic uncertainties and the statistical uncertainties of the MC samples, while the error bars on the data points indicate the data's statistical uncertainty. The final bin in each histogram includes the overflow. The lower panel shows the ratio of the data to the SM prediction after the background-only fit. The distribution is also shown for a representative signal point.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (450,425)$ GeV signal point for signal region SR1.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,420)$ GeV signal point for signal region SR2.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (500,350)$ GeV signal point for signal region SR3.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (600,350)$ GeV signal point for signal region SR4.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
Cutflow for the $(m_{\tilde{t}}, m_{\tilde{\chi}}) = (900,1)$ GeV signal point for signal region SR5.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status Email Forum Twitter GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.