Search for light pseudoscalar boson pairs produced from Higgs boson decays using the 4$τ$ and 2$μ$2$τ$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
CMS-SUS-24-002, 2025.
Inspire Record 2959279 DOI 10.17182/hepdata.158360

A search for a pair of light pseudoscalar bosons (a$_1$) produced in the decay of the 125 GeV Higgs boson is presented. The analysis examines decay modes where one a$_1$ decays into a pair of tau leptons and the other decays into either another pair of tau leptons or a pair of muons. The a$_1$ boson mass probed in this study ranges from 4 to 15 GeV. The data sample was recorded by the CMS experiment in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponds to an integrated luminosity of 138 fb$^{-1}$. No excess above standard model (SM) expectations is observed. The study combines the 4$τ$ and 2$μ$2$τ$ channels to set upper limits at 95% confidence level (CL) on the product of the Higgs boson production cross section and the branching fraction to the 4$τ$ final state, relative to the Higgs boson production cross section predicted by the SM. In this interpretation, the a$_1$ boson is assumed to have Yukawa-like couplings to fermions, with coupling strengths proportional to the respective fermion masses. The observed (expected) upper limits range between 0.007 (0.011) and 0.079 (0.066) across the mass range considered. The results are also interpreted in the context of models with two Higgs doublets and an additional complex singlet field (2HD+S). The tightest constraints are obtained for the Type III 2HD+S model. In this case, assuming the Higgs boson production cross section equals the SM prediction, values of the branching ratio for the Higgs boson decay into a pair of a$_1$ bosons exceeding 16% are excluded at 95% CL for a$_1$ boson masses between 5 and 15 GeV and $\tanβ$ $\gt$ 2, with the exception of scenarios in which the a$_1$ boson mixes with charm or bottom quark-antiquark bound states.

0 data tables

Search for b hadron decays to long-lived particles in the CMS endcap muon detectors

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-004, 2025.
Inspire Record 2958479 DOI 10.17182/hepdata.157009

A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.

0 data tables

First exclusive reconstruction of the B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$ mesons and precise measurement of their masses

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-011, 2025.
Inspire Record 2958462 DOI 10.17182/hepdata.159543

Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.

0 data tables

Search for resonant production of pairs of dijet resonances through broad mediators in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-EXO-24-038, 2025.
Inspire Record 2954159 DOI 10.17182/hepdata.159918

A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.

0 data tables

Probing the flavour structure of dimension-6 EFT operators in multilepton final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-TOP-23-009, 2025.
Inspire Record 2953423 DOI 10.17182/hepdata.157849

An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.

0 data tables

Search for heavy pseudoscalar and scalar bosons decaying to a top quark pair in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-HIG-22-013, 2025.
Inspire Record 2942928 DOI 10.17182/hepdata.159298

A search for pseudoscalar or scalar bosons decaying to a top quark pair ($\mathrm{t\bar{t}}$) in final states with one or two charged leptons is presented. The analyzed proton-proton collision data was recorded at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC and corresponds to an integrated luminosity of 138 fb$^{-1}$. The invariant mass $m_\mathrm{t\bar{t}}$ of the reconstructed $\mathrm{t\bar{t}}$ system and variables sensitive to its spin and parity are used to discriminate against the standard model $\mathrm{t\bar{t}}$ background. Interference between pseudoscalar or scalar boson production and the standard model $\mathrm{t\bar{t}}$ continuum is included, leading to peak-dip structures in the $m_\mathrm{t\bar{t}}$ distribution. An excess of the data above the background prediction, based on perturbative quantum chromodynamics (QCD) calculations, is observed near the kinematic $\mathrm{t\bar{t}}$ production threshold, while good agreement is found for high $m_\mathrm{t\bar{t}}$. The data are consistent with the background prediction if the contribution from the production of a color-singlet ${}^1\mathrm{S}_0^{[1]}$$\mathrm{t\bar{t}}$ quasi-bound state $η_\mathrm{t}$, predicted by nonrelativistic QCD, is added. Upper limits at 95% confidence level are set on the coupling between the pseudoscalar or scalar bosons and the top quark for boson masses in the range 365$-$1000 GeV, relative widths between 0.5 and 25%, and two background scenarios with or without $η_\mathrm{t}$ contribution.

996 data tables

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 21.0$% and H, $m_H = 700$ GeV, $\Gamma_H/m_H = 2.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

Observed values of twice the negative log-likelihood with respect to the SM (corresponding to $g_{A t \bar t} = g_{H t \bar t} = 0$) for the simultaneous presence of A, $m_A = 450$ GeV, $\Gamma_A/m_A = 5.0$% and H, $m_H = 400$ GeV, $\Gamma_H/m_H = 5.0$% as a function of the coupling modifiers $g_{A t \bar t}$ and $g_{H t \bar t}$.

More…

Study of Higgs boson pair production in the $HH \rightarrow b \overline{b} \gamma\gamma$ final state with 308 fb$^{-1}$ of data collected at $\sqrt{s} = 13$ TeV and 13.6 TeV by the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-140, 2025.
Inspire Record 2943676 DOI 10.17182/hepdata.160696

A search for Higgs boson pair production in the $b \overline{b} γγ$ final state is performed. The proton-proton collision dataset in this analysis corresponds to an integrated luminosity of 308 fb$^{-1}$, consisting of two samples, 140 fb$^{-1}$ at a centre-of-mass energy of 13 TeV and 168 fb$^{-1}$ at 13.6 TeV, recorded between 2015 and 2024 by the ATLAS detector at the CERN Large Hadron Collider. In addition to a larger dataset, this analysis improves upon the previous search in the same final state through several methodological and technical developments. The Higgs boson pair production cross section divided by the Standard Model prediction is found to be $μ_{HH} = 0.9^{+1.4}_{-1.1}$ ($μ_{HH} = 1^{+1.3}_{-1.0}$ expected), which translates into a 95% confidence-level upper limit of $μ_{HH}<3.8$. At the same confidence level the Higgs self-coupling modifier is constrained to be in the range $-1.7 < κ_λ< 6.6$ ($-1.8 < κ_λ< 6.9$ expected).

0 data tables

Measurement of the top-quark pole mass in dileptonic $t\bar{t}+ 1\text{-jet}$ events at $\sqrt{s}=13$ TeV with the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
CERN-EP-2025-135, 2025.
Inspire Record 2942410 DOI 10.17182/hepdata.159628

A measurement of the top-quark pole mass $m_{t}^\text{pole}$ is presented in $t\bar{t}$ events with an additional jet, $t\bar{t}+1\text{-jet}$, produced in $pp$ collisions at $\sqrt{s}=13$ TeV. The data sample, recorded with the ATLAS experiment during Run 2 of the LHC, corresponds to an integrated luminosity of 140 $\text{fb}^{-1}$. Events with one electron and one muon of opposite electric charge in the final state are selected to measure the $t\bar{t}+1\text{-jet}$ differential cross-section as a function of the inverse of the invariant mass of the $t\bar{t}+1\text{-jet}$ system. Iterative Bayesian Unfolding is used to correct the data to enable comparison with fixed-order calculations at next-to-leading-order accuracy in the strong coupling. The process $pp \to t\bar{t}j$ ($2 \rightarrow 3$), where top quarks are taken as stable particles, and the process $pp \to b\bar{b}l^+νl^- \barν j$ ($2 \to 7$), which includes top-quark decays to the dilepton final state and off-shell effects, are considered. The top-quark mass is extracted using a $χ^2$ fit of the unfolded normalized differential cross-section distribution. The results obtained with the $2 \to 3$ and $2 \to 7$ calculations are compatible within theoretical uncertainties, providing an important consistency check. The more precise determination is obtained for the $2 \to 3 $ measurement: $m_{t}^\text{pole}=170.7\pm0.3(\text{stat.})\pm1.4(\text{syst.})\pm 0.3(\text{scale})\pm 0.2(\text{PDF}\oplusα_\text{S})$ GeV, which is in good agreement with other top-quark mass results.

0 data tables

Determination of the spin and parity of all-charm tetraquarks

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-002, 2025.
Inspire Record 2931712 DOI 10.17182/hepdata.158584

The traditional quark model accounts for the existence of baryons, such as protons and neutrons, which consist of three quarks, as well as mesons, composed of a quark-antiquark pair. Only recently has substantial evidence started to accumulate for exotic states composed of four or five quarks and antiquarks. The exact nature of their internal structure remains uncertain. This paper reports the first measurement of quantum numbers of the recently discovered family of three all-charm tetraquarks, using data collected by the CMS experiment at the Large Hadron Collider from 2016 to 2018. The angular analysis techniques developed for the discovery and characterization of the Higgs boson have been applied to the new exotic states. The quantum numbers for parity $P$ and charge conjugation $C$ symmetries are found to be +1. The spin $J$ of these exotic states is consistent with 2$\hbar$, while 0$\hbar$ and 1$\hbar$ are excluded at 95% and 99% confidence level, respectively. The $J^{PC}=2^{++}$ assignment implies particular configurations of constituent spins and orbital angular momenta, which constrain the possible internal structure of these tetraquarks.

4 data tables

Summary of statistical tests.

Results from hypothesis test for pairs of spin-parity models.

The $\mathrm{J}/\psi\mathrm{J}/\psi$ invariant mass distribution in data.

More…

Search for the rare decay D$^0$$\to$$μ^+μ^-$ in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV

The CMS collaboration Chekhovsky, Vladimir ; Hayrapetyan, Aram ; Makarenko, Vladimir ; et al.
Phys.Rev.Lett. 135 (2025) 151803, 2025.
Inspire Record 2931458 DOI 10.17182/hepdata.158634

A search for the rare decay D$^0$$\to$$μ^+μ^-$ is reported using proton-proton collision events at $\sqrt{s}$ = 13.6 TeV collected by the CMS detector in 2022$-$2023, corresponding to an integrated luminosity of 64.5 fb$^{-1}$. This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D$^0$ mesons obtained from D$^{*+}$$\to$ D$^0π^+$ decays. No significant excess is observed. A limit on the branching fraction of $\mathcal{B}$(D$^0$$\to$$μ^+μ^-$) $\lt$ 2.4 $\times$ 10$^{-9}$ at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector.

0 data tables