The single spin asymmetry for inclusive direct-photon production has been measured using a polarized proton beam of 200 GeV/c with an unpolarized proton target at −0.15 < xf < 0.15 and 2.5 < pt < 3.1 GeV/c at Fermilab. The data on the cross section for pp → γX at 2.5 < pt < 3.8 GeV/c are also provided. The measurement was done using lead-glass calorimeters and photon detectors which surrounded the fiducial area of the calorimeters. Background rejection has been done using these surrounding photon detectors. The cross section obtained is consistent with the results of previous measurements assuming a nuclear dependence of A 1.0 . The single spin asymmetry, A N , for the direct-photon production is consistent with zero within experimental uncertainty.
No description provided.
No description provided.
The π0 inclusive and semi-inclusive, single-spin asymmetries have been measured using transversely polarized, 200-GeV/c proton and antiproton beams colliding with an unpolarized hydrogen target. The measured asymmetries are consistent with zero within the experimental uncertainties for the kinematic region -0.15<xF<+0.15 and 1<pT<4.5 GeV/c. Improvements in the data analysis showed that our earlier large asymmetries at pT≳3 GeV/c were not correct. These data indicate that PQCD expectations seem confirmed and the higher-twist contribution to the single-spin asymmetry in π0 production at xF=0 is not large. Additional evidence for such a conclusion comes from the measurement of a semi-inclusive π0 asymmetry, where associated charged particles are detected opposite to the π0 azimuthal direction. This experiment also provides high-statistics data on the inclusive π0 cross sections for pp and p¯p collisions at √s≊19.4 GeV. © 1996 The American Physical Society.
No description provided.
Pure inclusive reaction.
Semi-inclusive reaction where at least on associated charged particle is produced at (180+-30) degrees relative to the pi0.
None
No description provided.
No description provided.
No description provided.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12<x<1.0 and pT<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Čerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-pT hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given.
No description provided.
No description provided.
No description provided.
We present high-statistics results on the reactions a+p→c+X where a and c can be any of π±, K±, p, or p¯. The data were taken at 100 and 175 GeV/c incident momenta using the Fermilab Single-Arm Spectrometer operated over the kinematic range 0.2<x<1.0 and pt<~1.0 GeV/c. Investigating the x dependence of the data, we find agreement with a quark-parton picture, namely the cross sections have a power-law behavior in 1−x independent of pbeam and pt.
No description provided.
No description provided.
No description provided.
We compare high-transverse-momentum (P⊥) inclusive π0 production from π−, K−, p, and p¯ beams, at 100 and 200 GeV/c, for center-of-mass (c.m.) angles ranging from 2° to 115° and P⊥<4.5 GeV/c. The ratio σ(pp→π0X)σ(πp→π0X) decreases with increasing P⊥, and changes dramatically with c.m. angle. Also, the ratios σ(K−p→π0X)σ(π−p→π0X) and σ(p¯p→π0X)σ(pp→π0X) are approximately constant. These measurements are consistent with a theoretical viewpoint in which constituents of the incident hadrons undergo a hard-scattering subprocess.
No description provided.
No description provided.
No description provided.
We have measured the single-particle inclusive cross sections for p+p→π±+X, K±+X, p+X, p¯+X in the low-p⊥ region (≲ 1.5 GeV/c) as a function of the radial scaling variable XR in p−p collisions at 100, 200, and 400 GeV at Fermilab. The measured π+π− and K+K− ratios are shown to be remarkably similar to the same ratios which have recently been measured at large p⊥ at 90° in the center-of-mass system.
No description provided.
No description provided.
No description provided.
We have measured the production of π+ and π− in 200-, 300-, and 400-GeV p−p and 400-GeV p−d collisions for transverse momenta (p⊥) ranging from 0.77 to 7.67 GeV/c. At large values of x⊥=2p⊥s, where s is the c.m. energy, we have fitted the p−p data to the form A(1−x⊥)bp⊥−n; we obtain n=8.2±0.5 for π+ and 8.5±0.5 for π−. At x⊥>0.3 the π+π− ratio in p−p collisions rises appreciably with increasing x⊥ whereas the π+π− ratio obtained from the difference of p−d and p−p cross sections is ∼ 1.0 at all x⊥.
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
Axis error includes +- 0.0/0.0 contribution (5 AND 10//(C//).
Measurements of the cross section for the reaction p+p→π0+anything have been completed. The data cover a range of incident proton energies 50-400 GeV, π0 transverse momenta 0.3-4 GeV/c, and laboratory angles 30-275 mrad. The experiment was performed using the internal proton beam at the Fermi National Accelerator Laboratory. A lead-glass counter was used to detect photons from the decay of π0's produced by collisions in thin targets of hydrogen or carbon. Tables of the measured cross sections are presented.
No description provided.
No description provided.
No description provided.