Total Cross-Section for Hadronic Production by e+ e- Annihilation in the Total Center-Of-Mass Energy Range 1.42-GeV - 3.09-GeV

Bacci, C. ; Baldini Celio, R. ; Battistoni, G. ; et al.
Phys.Lett.B 86 (1979) 234-238, 1979.
Inspire Record 141722 DOI 10.17182/hepdata.27311

We report experimental results on the cross section for the reaction e + e − → hadrons as a function of the total c.m. energy in the range W = 1.42–3.09 GeV. The results, combined with those already existing below the charm threshold, clearly indicate a structure for R ( W ) = α ( e + e − → hadrons)/ α ( e + e − → μ + μ − ) in that energy region.

1 data table match query

THE ENERGY RANGES OF THE NEW DATA AND THE PREVIOUS (REVISED) DATA OVERLAP BETWEEN 1.9 AND 2.0 GEV. RADIATIVE CORRECTIONS HAVE BEEN APPLIED TO ALL DATA. THIS CROSS SECTION EXCLUDES TWO-BODY FINAL STATES.


The scale dependence of the hadron multiplicity in quark and gluon jets and a precise determination of C(A)/C(F).

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 383-400, 1999.
Inspire Record 495414 DOI 10.17182/hepdata.49173

Data collected at the Z resonance using the DELPHI detector at LEP are used to determine the charged hadron multiplicity in gluon and quark jets as a function of a transverse momentum-like scale. The colour factor ratio, \cacf, is directly observed in the increase of multiplicities with that scale. The smaller than expected multiplicity ratio in gluon to quark jets is understood by differences in the hadronization of the leading quark or gluon. From the dependence of the charged hadron multiplicity on the opening angle in symmetric three-jet events the colour factor ratio is measured to be: C_A/C_F = 2.246 \pm 0.062 (stat.) \pm 0.080 (syst.) \pm 0.095 (theo.)

1 data table match query

Charged multiplicity in events with a hard photon, as a function of the apparent centre-of-mass energy (SQRT(S)) of the hadronic system. The errors shown are statistical only.


Tests of the standard model and constraints on new physics from measurements of fermion pair production at 189-GeV to 209-GeV at LEP

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 33 (2004) 173-212, 2004.
Inspire Record 628491 DOI 10.17182/hepdata.43174

Cross-section and angular distributions for hadronic and lepton-pair final states in e+e- collisions at centre-of-mass energies between 189 GeV and 209 GeV, measured with the OPAL detector at LEP, are presented and compared with the predictions of the Standard Model. The measurements are used to determine the electromagnetic coupling constant alphaem at LEP2 energies. In addition, the results are used together with OPAL measurements at 91-183 GeV within the S-matrix formalism to determine the gamma-Z interference term and to make an almost model-independent measurement of the Z mass. Limits on extensions to the Standard Model described by effective four-fermion contact interactions or the addition of a heavy Z boson are also presented.

1 data table match query

CM energy values.


Study of Quark Fragmentation at 29-GeV: Global Jet Parameters and Single Particle Distributions

Bender, D. ; Derrick, M. ; Fernandez, E. ; et al.
Phys.Rev.D 31 (1985) 1, 1985.
Inspire Record 201482 DOI 10.17182/hepdata.23581

In this paper, results are presented from a study of the hadronic final states in e+e− annihilation at 29 GeV. The data were obtained with the High Resolution Spectrometer (HRS) at the SLAC PEP e+e− colliding-beam facility. The results are based on 6342 selected events corresponding to an integrated luminosity of 19.6 pb−1. The distributions of the events in sphericity (S), thrust (T), and aplanarity (A) are given and compared to other e+e− data in the same energy range. We measure 〈S〉=0.130±0.003±0.010 and 〈1-T〉=0.100±0.002. The sphericity distribution is compared to sphericity measurements made for beam jets in hadronic collisions as well as jets studied in neutrino scattering. The data sample is further reduced to 4371 events with the two-jet selections, S≤0.25 and A≤0.1. The single-particle distributions in the longitudinal and transverse directions are given. For low values of the momentum fraction (z=2p/W), the invariant distribution shows a maximum at z∼0.06, consistent with a QCD expectation. The data at high Feynman x (xF) show distribution consistent with being dominated by a (1-xf)2 variation for the leading quark-meson transition. The rapidity distribution shows a shallow central minimum with a height (1/NevdNh/dY‖Y=0=2.3±0.02±0.07. The mean charged multiplicity is measured to be 〈nch〉=13.1±0.05±0.6. The mean transverse momentum relative to the thrust axis 〈pT〉 rises as a function of z to a value of 0.70±0.02 GeV/c for z≳0.3. The distributions are compared to those measured in other reactions.

1 data table match query

No description provided.


Studies of hadronic event structure in e+ e- annihilation from 30-GeV to 209-GeV with the L3 detector

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Rept. 399 (2004) 71-174, 2004.
Inspire Record 652683 DOI 10.17182/hepdata.54900

In this Report, QCD results obtained from a study of hadronic event structure in high energy e^+e^- interactions with the L3 detector are presented. The operation of the LEP collider at many different collision energies from 91 GeV to 209 GeV offers a unique opportunity to test QCD by measuring the energy dependence of different observables. The main results concern the measurement of the strong coupling constant, \alpha_s, from hadronic event shapes and the study of effects of soft gluon coherence through charged particle multiplicity and momentum distributions.

37 data tables match query

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 130.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 136.1 GeV.

Jet fractions using the JADE algorithm as a function of the jet resolution parameter YCUT at c.m. energy 161.3 GeV.

More…

Search for the Production of a New Quark Flavor at the Highest {PETRA} Energies

Barber, D.P. ; Becker, U. ; Benda, H. ; et al.
Phys.Rev.Lett. 44 (1980) 1722, 1980.
Inspire Record 152616 DOI 10.17182/hepdata.20702

This paper reports the results of a study of hadron production in e+e− collisions at c.m. system energies of 33, 35, and 35.8 GeV. Production of a new quark flavor has been sought. The measured values of the total cross section, the thrust distributions, and the study of inclusive muon production show no evidence for the production of a new charge-23e quark near threshold. In addition, during an energy scan in the region 29.9<~s<~31.6 GeV, no hadron resonance indicating the existence of a bound state composed of charge-23e quarks has been found.

1 data table match query

ENERGY SCAN IN 20 MEV STEPS.


Search for Top Quark and a Test of Models Without Top Quark at the Highest {PETRA} Energies

Adeva, B. ; Barber, D.P. ; Becker, U. ; et al.
Phys.Rev.Lett. 50 (1983) 799, 1983.
Inspire Record 182337 DOI 10.17182/hepdata.20549

With a PETRA energy scan in ≤30-MeV steps, the continuum production of open top quark up to 38.54 GeV is excluded. Over regions of energy scan from 29.90 to 38.63 GeV limits are set on the product of hadronic branching ratio and electronic width BhΓee for toponium to be less than 2.0 keV at the 95% confidence level. By a search for flavor-changing neutral currents in b decay, models without a top quark are excluded.

1 data table match query

MEAN VALUES OF R. FIRST ENERGY RANGE IS ACTUALLY 29.90 TO 31.46 AND 33.0 TO 36.72 GEV.


Search for Narrow Resonances in $e^+ e^-$ Annihilation at $c$.m. Energies Between 33.0-{GeV} and 36.72-{GeV}

The JADE collaboration Bartel, W. ; Cords, D. ; Dittmann, P. ; et al.
Phys.Lett.B 100 (1981) 364-366, 1981.
Inspire Record 164319 DOI 10.17182/hepdata.45224

A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.

1 data table match query

AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.


SEARCH FOR NARROW QUARKONIUM STATES AND PAIR PRODUCTION OF NEW HEAVY QUARKS AT c.m. ENERGIES FROM 33-GeV TO 36.7-GeV

The CELLO collaboration Behrend, H.J. ; Chen, Ch. ; Field, J.H. ; et al.
DESY-81-029, 1981.
Inspire Record 166365 DOI 10.17182/hepdata.45222

None

1 data table match query

CONTINUOUS COVERAGE OF THREE ENERGY RANGES (33.00 TO 33.80, 34.00 TO 35.26 AND 36.08 TO 36.72 GEV PLUS SEVEN ADDITIONAL DATA POINTS AROUND 35.7 GEV).


QUARK HADRONIZATION PROBED BY K0 MESONS

The HRS collaboration Abachi, S. ; Derrick, M. ; Kooijman, P. ; et al.
Phys.Rev.D 41 (1990) 2045, 1990.
Inspire Record 280958 DOI 10.17182/hepdata.23000

Total and differential K0 corss sections are presented from e+e− collisions at s=29 GeV in the High Resolution Spectrometer detector. K0 and charged-particle distributions are compared in a study of the hadronization of quarks of known flavor. Ecents of the reaction e+e−→cc¯ are tagged by identifying D*'s while uu¯, dd¯, or ss¯ events are tagged through the identification of a charged particle with fractional momentum near 1. Parton-shower models with cluster and string fragmentation are compared with these data. Also, certain particle scaling tests are performed using the quark-flavor tags. In addition, K0 production in two- and three-jet events is compared to these models.

1 data table match query

K0 differential cross section as function of the fractional energy.


QCD studies with e+ e- annihilation data at 172-GeV to 189-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 16 (2000) 185-210, 2000.
Inspire Record 513476 DOI 10.17182/hepdata.49000

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies of sqrt{s}=172, 183 and 189 GeV. The total integrated luminosity of the three samples, measured with the OPAL detector, corresponds to 250 pb^-1. We present distributions of event shape variables, charged particle multiplicity and momentum, measured separately in the three data samples. From these we extract measurements of the strong coupling alpha_s, the mean charged particle multiplicity <nch> and the peak position xi_0 in the xi_p=ln(1/x_p) distribution. In general the data are described well by analytic QCD calculations and Monte Carlo models. Our measured values of alpha_s, <nch> and xi_0 are consistent with previous determinations at sqrt{s}=MZ.

1 data table match query

Weighted mean values of ALPHAS derived from the six event shape distribution using order (alpha**2) +NLLA QCD calculation with x(mu)=1 and the ln(R)-matching scheme. Results are also given evolved to M(Z0). The 187 GeV entry corresponds to the luminosity weighted mean c.m. energy.


QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

3 data tables match query

Jet rates using the Cone algorithm as a function of the cone size R. Minimum jet energy is fixed at 7 GeV.

Jet rates using the Cone algorithm as a function of the minimum jet energy. The cone size is fixed at 0.7 radians.

PTOUT distribution.


QCD studies with e+ e- annihilation data at 130-GeV and 136-GeV.

The OPAL collaboration Alexander, G. ; Allison, John ; Altekamp, N. ; et al.
Z.Phys.C 72 (1996) 191-206, 1996.
Inspire Record 418007 DOI 10.17182/hepdata.47564

We have studied hadronic events produced at LEP at centre-of-mass energies of 130 and 136 GeV. Distributions of event shape observables, jet rates, momentum spectra and multiplicities are presented and compared to the predictions of several Monte Carlo models and analytic QCD calculations. From fits of event shape and jet rate distributions to\({\mathcal{O}}(\alpha _s^2 ) + NLLA\) QCD calculations, we determineαs(133 GeV)=0.110±0.005(stat.)±0.009(syst.). We measure the mean charged particle multiplicity 〈nch〉=23.40±0.45(stat.) ±0.47(syst.) and the position ζ0 of the peak in the ζp = ln(1/xp) distribution ζ0=3.94±0.05(stat.)±0.11(syst.). These results are compared to lower energy data and to analytic QCD or Monte Carlo predictions for their energy evolution.

2 data tables match query

Jet rates using the Cone algorithm as a function of the cone size R. Minimum jet energy is fixed at 7 GeV.

PTIN distribution.


QCD studies using a cone based jet finding algorithm for e+ e- collisions at LEP

The OPAL collaboration Akers, R. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 63 (1994) 197-212, 1994.
Inspire Record 373000 DOI 10.17182/hepdata.48238

We describe a cone-based jet finding algorithm (similar to that used in\(\bar p\)p experiments), which we have applied to hadronic events recorded using the OPAL detector at LEP. Comparisons are made between jets defined with the cone algorithm and jets found by the “JADE” and “Durham” jet finders usually used ine+e− experiments. Measured jet rates, as a function of the cone size and as a function of the minimum jet energy, have been compared with O(αs2) calculations, from which two complementary measurements\(\alpha _s \left( {M_{Z^0 } } \right)\) have been made. The results are\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.116±0.008 and\(\alpha _s \left( {M_{Z^0 } } \right)\)=0.119±0.008 respectively, where the errors include both experimental and theoretical uncertainties. Measurements are presented of the energy flow inside jets defined using the cone algorithm, and compared with equivalent data from\(\bar p\)p interactions, reported by the CDF collaboration. We find that the jets ine+e− are significantly narrower than those observed in\(\bar p\)p. The main contribution to this effect appears to arise from differences between quark- and gluon-induced jets.

16 data tables match query

Measured 2 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

Measured 2 jet production rate as a function of R, the jet cone radius, for a fixed value of the minimum jet energy, EPSILON, of 7 GeV.

Measured 3 jet production rate as a function of EPSILON, the minimum energy of a jet for a fixed cone radius R = 0.7 radians.

More…

Properties of hadronic Z decays and test of QCD generators

The ALEPH collaboration Buskulic, D. ; Decamp, D. ; Goy, C. ; et al.
Z.Phys.C 55 (1992) 209-234, 1992.
Inspire Record 334577 DOI 10.17182/hepdata.1420

Distributions are presented of event shape variables, jet roduction rates and charged particle momenta obtained from 53 000 hadronicZ decays. They are compared to the predictions of the QCD+hadronization models JETSET, ARIADNE and HERWIG, and are used to optimize several model parameters. The JETSET and ARIADNE coherent parton shower (PS) models with running αs and string fragmentation yield the best description of the data. The HERWIG parton shower model with cluster fragmentation fits the data less well. The data are in better agreement with JETSET PS than with JETSETO(αS2) matrix elements (ME) even when the renormalization scale is optimized.

1 data table match query

Jet mass difference distribution.


Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables match query

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

Particle multiplicity of unbiased gluon jets from e+ e- three jet events

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 23 (2002) 597-613, 2002.
Inspire Record 565517 DOI 10.17182/hepdata.49742

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13, where the uncertainties are the statistical and systematic terms added in quadrature. These results are in general agreement with theoretical predictions. In addition, we use the measurements of the energy dependence of Ng and Nq to determine an effective value of the ratio of QCD color factors, CA/CF. Our result, CA/CF = 2.23 +/- 0.14 (total), is consistent with the QCD value of 2.25.

3 data tables match query

Measurements of the mean charged particle multiplicity of three-jet uds flavour 'Y events' from Z0 decays, as a function of the angle THETA1 between the lowest two energy jets. The results for the quark jet scale SQRT(S(C=QQBAR)) and the gluon jet scales PT(C=LU) and PT(C=LE) are also given.

Measurements of the unbiased gluon multiplicity as a function of the energy scale Q=PT(C=LU). The corresponding bins of THETA1 in 'Y events' are also indicated.

Measurements of unbiased gluon jet multiplicity as a function of the energy scale Q=PT(C=LE).


Multiplicity Distributions in e+ e- Annihilations at PETRA Energies

The PLUTO collaboration Berger, Christoph ; Genzel, H. ; Grigull, R. ; et al.
Phys.Lett.B 95 (1980) 313-317, 1980.
Inspire Record 154270 DOI 10.17182/hepdata.27160

Measurements of the charged multiplicities for hadron production in e + e − annihilation in the center of mass energy range 9–32 GeV have been made. The average charged multiplicity has an energy dependence much stronger than ln s and similar to that reported for pp collisions. Quantitative differences are observed in the magnitude of both the average multiplicity 〈 n ch 〉 and the dispersion D ch for e + e − and pp interactions at the same center of mass energy. 〈 n ch 〉 and the ratio 〈 n ch / D ch in e + e − annihilations are significantly larger than in pp collisions and are found to be in overall agreement with QCD predictions. KNO scaling is seen to be satisfied.

1 data table match query

THE FINAL TABLE ENTRY COMBINES THE DATA FROM THE THREE HIGHEST ENERGY BINS.


Multihadron production in e+ e- collisions up to 3 gev total center-of-mass energy

Ceradini, F. ; Conversi, M. ; D' Angelo, S. ; et al.
Phys.Lett.B 47 (1973) 80-84, 1973.
Inspire Record 95215 DOI 10.17182/hepdata.28037

New results on the multihadron production by electron and positron beams colliding with a total energy of up to 3 GeV are reported. Disregarding possible kaon final states, the ratio σ mh / σ μμ of the total multihadron cross-section to the point-like cross section for process e + e − → μ + μ − has an average value of 1.58 ± 0.25 in the energy interval 2.6–3.0 GeV. The average charged multiplicity over this energy range is 〈 n c 〉 = 2.9 ± 0.3.

1 data table match query

AT A MEAN ENERGY OF 2.85 GEV, THE AVERAGE MULTIHADRON CROSS SECTION IS 16.4 +- 2.6 NB (R = 1.58 +- 0.25).


Measurements of the line shape of the Z0 and determination of electroweak parameters from its hadronic and leptonic decays

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Nucl.Phys.B 417 (1994) 3-57, 1994.
Inspire Record 372144 DOI 10.17182/hepdata.48413

During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450 000 Z 0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z 0 resonance. Model independent fits to the cross sections and leptonic forward- backward asymmetries yield the following Z 0 parameters: the mass and total width M Z = 91.187 ± 0.009 GeV, Γ Z = 2.486 ± 0.012 GeV, the hadronicf and leptonic partials widths Γ had = 1.725 ± 0.012 GeV, Γ ℓ = 83.01 ± 0.52 MeV, the invisible width Γ inv = 512 ± 10 MeV, the ratio of hadronic to leptonic partial widths R ℓ = 20.78 ± 0.15, and the Born level hadronic peak cross section σ 0 = 40.90 ± 0.28 nb. Using these results and the value of α s determined from DELPHI data, the number of light neutrino species is determined to be 3.08 ± 0.05. The individual leptonic widths are found to be: Γ e = 82.93 ± 0.70 MeV, Γ μ = 83.20 ± 1.11 MeV and Γ τ = 82.89 ± 1.31 MeV. Using the measured leptonic forward-backward asymmetries and assuming lepton universality, the squared vector and axial-vector couplings of the Z 0 to charged leptons are found to be g V ℓ 2 = (1.47 ± 0.51) × 10 −3 and g A ℓ 2 = 0.2483 ± 0.0016. A full Standard Model fit to the data yields a value of the top mass m t = 115 −82 +52 (expt.) −24 +52 (Higgs) GeV, corresponding to a value of the weak mixing angle sin 2 θ eff lept = 0.2339±0.0015 (expt.) −0.0004 +0.0001 (Higgs). Values are obtained for the variables S and T , or ϵ 1 and ϵ 3 which parameterize electroweak loop effects.

1 data table match query

LEPTON+ LEPTON- cross sections from the 1990 data set. Data are corrected for t-channel subtraction, and to full solid angle but not for momenta and accollinearity cuts. Additional systematic uncertainty, excluding luminosity, is 0.6 pct.


Measurements of the cross sections for e+ e- --> hadrons at 3.650-GeV, 3.6648-GeV, 3.773-GeV and the branching fraction for psi(3770) --> non D anti-D.

The BES collaboration Ablikim, M. ; Bai, J.Z. ; Ban, Y. ; et al.
Phys.Lett.B 641 (2006) 145-155, 2006.
Inspire Record 717665 DOI 10.17182/hepdata.41802

Using the BES-II detector at the BEPC Collider, we measured the lowest order cross sections and the $R$ values ($R=\sigma^0_{e^+e^- \to {\rm hadrons}}/\sigma^0_{e^+e^- \to \mu^+\mu^-}$) for inclusive hadronic event production at the center-of-mass energies of 3.650 GeV, 3.6648 GeV and 3.773 GeV. The results lead to $\bar R_{uds}=2.224\pm 0.019\pm 0.089$ which is the average of these measured at 3.650 GeV and 3.6648 GeV, and $R=3.793\pm 0.037 \pm 0.190$ at $\sqrt{s}=3.773$ GeV. We determined the lowest order cross section for $\psi(3770)$ production to be $\sigma^{\rm B}_{\psi(3770)} = (9.575\pm 0.256 \pm 0.813)~{\rm nb}$ at 3.773 GeV, the branching fractions for $\psi(3770)$ decays to be $BF(\psi(3770) \to D^0\bar D^0)=(48.9 \pm 1.2 \pm 3.8)%$, $BF(\psi(3770) \to D^+ D^-)=(35.0 \pm 1.1 \pm 3.3)%$ and $BF(\psi(3770) \to D\bar{D})=(83.9 \pm 1.6 \pm 5.7)%$, which result in the total non-$D\bar D$ branching fraction of $\psi(3770)$ decay to be $BF(\psi(3770) \to {\rm non}-D\bar D)=(16.1 \pm 1.6 \pm 5.7)%$.

1 data table match query

The Ruds value obtained by averaging the first two energy points.. The first error is the combined statistical and point-to-point systematic error and the DSYS error is the common systematic error.


Measurement of the inclusive B* cross-section above the Upsilon (4S)

The CLEO-II collaboration Akerib, D.S. ; Barish, B. ; Cowen, D.F. ; et al.
Phys.Rev.Lett. 67 (1991) 1692-1695, 1991.
Inspire Record 29927 DOI 10.17182/hepdata.19887

Using the CLEO II detector at the Cornell Electron Storage Ring, we have determined the inclusive B* cross section above the Υ(4S) resonance in the energy range from 10.61 to 10.70 GeV. We also report a new measurement of the energy of the B*→Bγ transition photon of 46.2±0.3±0.8 MeV.

1 data table match query

Hadronic cross section above the continuum. The final state is an unknown mixture of B BBAR + B* BBAR + B B*BAR (+ B* B*BAR only at the highest energy).


Measurement of the cross section of W-boson pair production at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Phys.Lett.B 600 (2004) 22-40, 2004.
Inspire Record 658254 DOI 10.17182/hepdata.48792

The cross section of W-boson pair-production is measured with the L3 detector at LEP. In a data sample corresponding to a total luminosity of 629.4/pb, collected at centre-of-mass energies ranging from 189 to 209 GeV, 9834 four-fermion events with W bosons decaying into hadrons or leptons are selected. The total cross section is measured with a precision of 1.4 % and agrees with the Standard Model expectation. Assuming charged-lepton universality, the branching fraction for hadronic W-boson decays is measured to be: Br(W-->hadrons) = 67.50 +- 0.42 (stat.) +- 0.30(syst.) %, in agreement with the Standard Model. Differential cross sections as a function of the W- production angle are also measured for the semi-leptonic channels qqev and qqmv.

11 data tables match query

Measured cross section for the process E+ E- --> LEPTON NU LEPTON NU.

Measured cross section for the process E+ E- --> QUARK QUARKBAR ELECTRON NEUTRINO.

Measured cross section for the process E+ E- --> QUARK QUARKBAR MUON NEUTRINO.

More…

Measurement of the Total Hadronic Cross Section in e+e- Annihilations below 10.56 GeV

The CLEO collaboration Besson, D. ; Pedlar, T.K. ; Cronin-Hennessy, D. ; et al.
Phys.Rev.D 76 (2007) 072008, 2007.
Inspire Record 753556 DOI 10.17182/hepdata.47183

Using the CLEO III detector, we measure absolute cross sections for e+e- --> hadrons at seven center-of-mass energies between 6.964 and 10.538 GeV. The values of R, the ratio of hadronic and muon pair production cross sections, are determined within 2% total r.m.s. uncertainty.

1 data table match query

Measured values of R as a function of CM energy. The first DSYS error is the correlated uncertainty and the second is the uncorrelated.


Measurement of hadron and lepton-pair production in e+ e- collisions at s**(1/2) = 192-GeV - 208-GeV at LEP.

The L3 collaboration Achard, P. ; Adriani, O. ; Aguilar-Benitez, M. ; et al.
Eur.Phys.J.C 47 (2006) 1-19, 2006.
Inspire Record 704275 DOI 10.17182/hepdata.48637

Hadron production and lepton-pair production in e+e- collisions are studied with data collected with the L3 detector at LEP at centre-of-mass energies sqrt{s}=192-208GeV. Using a total integrated luminosity of 453/pb, 36057 hadronic events and 12863 lepton-pair events are selected. The cross sections for hadron production and lepton-pair production are measured for the full sample and for events where no high-energy initial-state-radiation photon is emitted prior to the collisions. Lepton-pair events are further investigated and forward-backward asymmetries are measured. Finally, the differential cross sections for electron-positron pair-production is determined as a function of the scattering angle. An overall good agreement is found with Standard Model predictions.

14 data tables match query

Measured hadron cross section for the high-energy data sample.

Measured MU+ MU- cross section for the high-energy data sample.

Measured TAU+ TAU- cross section for the high-energy data sample.

More…