Negative pion-proton elastic scattering near one hundred eighty degrees between six hundred and twelve hundred eighty MeV/c

Richards, T.J. ;
PhD Thesis, St. Louis U., 1972.
Inspire Record 1408652 DOI 10.17182/hepdata.16990

None

1 data table match query

Scattering of π−Mesons in the Momentum Range 875-1579 MeV/c from a Polarized Proton Target

Duke, P.J. ; Jones, D.P. ; Kemp, M.A.R. ; et al.
Phys.Rev. 166 (1968) 1448-1457, 1968.
Inspire Record 1407765 DOI 10.17182/hepdata.70298

Measurements have been made of the asymmetry in the scattering of π− mesons by a polarized proton target. Scattered π mesons and recoil protons were detected in arrays of scintillation counters; data were obtained at 16 scattering angles at each of 8 beam momenta between 875 and 1578 MeV/c. Analysis of these data together with earlier differential-cross-section measurements shows that there must exist at least three resonances in this energy region: (i) mass 1920 MeV/c2, Γ=170 MeV/c2, I=32, F72; (ii) mass 1682 MeV/c2, Γ=100 MeV/c2, I=12, F52; and (iii) mass 1674 MeV/c2, Γ=100 MeV/c2, I=12, D52.

1 data table match query

No description provided.


DCS for π − p elastic scattering from 1.2 to 3.0 GeV/ c and phase shift analysis

Aplin, P.S. ; Cowan, I.M. ; Gibson, W.M. ; et al.
Nucl.Phys.B 32 (1971) 253-284, 1971.
Inspire Record 1104030 DOI 10.17182/hepdata.69638

Differential cross sections have been measured for π − p elastic scattering at laboratory momenta in the range 1.2 to 3.0 GeV/ c for the c.m. range 0.97 > cos θ ∗ > −0.98 . The corresponding mass range is 1.78 to 2.56 GeV/ c 2 . The data was obtained from a counter experiment in which the scattered pions and protons were detected in coincidence by arrays of scintillation counters.

1 data table match query

No description provided.


Inclusive single-particle distributions in $\pi^{\pm}$ $p$ reactions at 8 and 16 {GeV/c}

Bosetti, P. ; Grassler, H. ; Kirk, H. ; et al.
Nucl.Phys.B 54 (1973) 141-160, 1973.
Inspire Record 87988 DOI 10.17182/hepdata.811

Invariant single-particle cross sections for pion and proton production in π ± p interactions at 8 and 16 GeV/ c are presented in terms of integrated distributions as functions of x , reduced rapidity ζ and p ⊥ 2 , and also in terms of double differential cross sections E d 2 σ /(d x d p ⊥ 2 ) and d ζ d p ⊥ 2 ). A comparison of π ± and π − induced reactions is made and the energy dependence is discussed. It is shown that the single-particle structure function cannot be factorized in its dependece on transverse and longitudinal momentum. For the beam-unlike pion, there is an indication for factorizability in terms of rapidity and transverse momentum in a small central region.

1 data table match query

No description provided.


pi + /- p Backward Scattering Between 1.5 and 3.0 BeV/c

Carroll, A.S. ; Fischer, J. ; Lundby, A. ; et al.
Phys.Rev.Lett. 20 (1968) 607-609, 1968.
Inspire Record 54465 DOI 10.17182/hepdata.897

None

1 data table match query

No description provided.


Scattering of $\pi^-$ Mesons in the Momentum Range 0.643-{GeV}/$c$ to 2.14-{GeV}/$c$ From a Polarized Proton Target

Cox, C.R. ; Duke, P.J. ; Heard, K.S. ; et al.
Phys.Rev. 184 (1969) 1453, 1969.
Inspire Record 18772 DOI 10.17182/hepdata.13

The asymmetry in the scattering of π− mesons by polarized protons has been measured at 50 different momenta from 0.643 to 2.14 GeV/c. Results were obtained at values of cosθ ranging from approximately +0.9 to -0.95 in the c.m. system at each incident pion momentum. The pion beam was incident on a 7.6-cm-long crystal assembly of lanthanum magnesium nitrate, in which the hydrogen in the water of crystallization was polarized by the "solid effect." The total momentum spread of the beam was 10% (full width at half-height) and data were collected simultaneously in 4 momentum channels, each with 2½% full width at half-height. A gas Čherenkov counter was used to reject incoming electrons. Scattered particles were detected in scintillation counter arrays placed within the 10-cm gap of the polarized target magnet. Encoded information from each array was stored in the memory of a PDP-5 computer connected on-line to a fast electronic logic network. The computer was programmed to classify the events according to momentum and scattering angle and subdivide them into coplanar and noncoplanar categories. The latter provided a measure of the background. The results have been expressed in the form of an expansion in terms of first associated Legendre polynomial series and compared with the predictions of recent phase-shift solutions. It is concluded that although these analyses give satisfactory predictions of the general features of the results, no one solution gives complete agreement with the data above about 1.0 GeV/c.

1 data table match query

No description provided.


pi+- p differential cross sections at low energies.

Denz, H. ; Amaudruz, P. ; Brack, J.T. ; et al.
Phys.Lett.B 633 (2006) 209-213, 2006.
Inspire Record 699647 DOI 10.17182/hepdata.31620

Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.

12 data tables match query

Elastic PI- P cross section for incident kinetic energy 43.3 MeV for the rotated target data. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 43.3 MeV. Errors shown are statistical only.

Elastic PI- P cross section for incident kinetic energy 37.1 MeV. Errors shown are statistical only.

More…

Low energy analyzing powers in pion proton elastic scattering.

Meier, R. ; Croni, M. ; Bilger, R. ; et al.
Phys.Lett.B 588 (2004) 155-162, 2004.
Inspire Record 645151 DOI 10.17182/hepdata.26962

Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

11 data tables match query

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 87.2 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 68.4 MeV from the data set 1.

Analyzing power for PI+ P elastic scattering at incidient kinetic energy 57.2 MeV from the data set 1.

More…

Analyzing Powers in $\pi^\pm P$ (Polarized) Elastic Scattering From $T (\pi$) = 98-{MeV} to 263-{MeV}

Sevior, M.E. ; Feltham, A. ; Weber, P. ; et al.
Phys.Rev.C 40 (1989) 2780-2788, 1989.
Inspire Record 288842 DOI 10.17182/hepdata.26219

Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.

10 data tables match query

Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.

Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.

Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.

More…

Precision pion proton elastic differential cross sections at energies spanning the Delta resonance.

Pavan, M.M. ; Brack, J.T. ; Duncan, F. ; et al.
Phys.Rev.C 64 (2001) 064611, 2001.
Inspire Record 554203 DOI 10.17182/hepdata.31782

A precision measurement of absolute pi+p and pi-p elastic differential cross sections at incident pion laboratory kinetic energies from T_pi= 141.15 to 267.3 MeV is described. Data were obtained detecting the scattered pion and recoil proton in coincidence at 12 laboratory pion angles from 55 to 155 degrees for pi+p, and six angles from 60 to 155 degrees for pi-p. Single arm measurements were also obtained for pi+p energies up to 218.1 MeV, with the scattered pi+ detected at six angles from 20 to 70 degrees. A flat-walled, super-cooled liquid hydrogen target as well as solid CH2 targets were used. The data are characterized by small uncertainties, ~1-2% statistical and ~1-1.5% normalization. The reliability of the cross section results was ensured by carrying out the measurements under a variety of experimental conditions to identify and quantify the sources of instrumental uncertainty. Our lowest and highest energy data are consistent with overlapping results from TRIUMF and LAMPF. In general, the Virginia Polytechnic Institute SM95 partial wave analysis solution describes our data well, but the older Karlsruhe-Helsinki PWA solution KH80 does not.

18 data tables match query

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and single arm pion detection. There is an additional systematic error of 1.1 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT for PI+ beams which is not included in the errors shown in the table.

Centre of mass absolute differential cross sections at pion kinetic energy 141.15 MeV using the liquid H2 target and two arm pion detection. There is an additional systematic error of 1.3 PCT (1.6 PCT) for PI+ (PI-) beams which is not included in the errors shown in the table.

More…

Differential Cross-sections for $\pi^+ P$ and $\pi^- P$ Elastic Scattering From 378-{MeV}/c to 687-{MeV}/c

Sadler, M.E. ; Briscoe, W.J. ; Fitzgerald, D.H. ; et al.
Phys.Rev.D 35 (1987) 2718-2735, 1987.
Inspire Record 250023 DOI 10.17182/hepdata.23362

Differential cross sections have been measured for π+p and π−p elastic scattering at 378, 408, 427, 471, 509, 547, 586, 625, 657, and 687 MeV/c in the angular range -0.8<cosθc.m.<0.8. The scattered pion and recoil proton were detected in coincidence using scintillation-counter hodoscopes. A liquid-hydrogen target was used except for measurements at forward angles, in which a CH2 target was used. Statistical uncertainties in the data are typically less than 1%. Systematic uncertainties in acceptance and detection efficiency are estimated to be 1%. Absolute normalization uncertainties are 2–3 % for most of the data. The measurements are compared with previous data and with the results of recent partial-wave analyses. The data are fit with Legendre expansions from which total elastic cross sections are obtained.

1 data table match query

Legendre polynomial of fit to corrected data.


Pi- p ELASTIC SCATTERING IN THE CMS ENERGY RANGE 1400-MeV TO 2000-MeV

Brody, A.D. ; Cashmore, R.J. ; Kernan, A. ; et al.
Phys.Rev.D 3 (1971) 2619, 1971.
Inspire Record 60976 DOI 10.17182/hepdata.4110

Total and differential cross sections for π−p elastic scattering are presented at 35 energies between 1400 and 2000 MeV.

1 data table match query

No description provided.


Pi- p elastic scattering near 180 degrees between 600 and 1280 mev/c

Crabb, D.G. ; Keller, R. ; O' Fallon, J.R. ; et al.
Phys.Rev.Lett. 27 (1971) 216-219, 1971.
Inspire Record 68952 DOI 10.17182/hepdata.21460

The differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center of mass have been measured at 33 incident-pion momenta in the range 600 to 1280 MeV/c. Angular distributions are presented. The extrapolated differential cross sections at 180° show considerable structure, in particular a dip near 1150 MeV/c. In general the near-180° cross sections do not agree with existing phase shift solutions above 1000 MeV/c

1 data table match query

No description provided.


Pi p elastic scattering from 88 to 292 mev

Bussey, P.J. ; Carter, J.R. ; Dance, D.R. ; et al.
Nucl.Phys.B 58 (1973) 363-377, 1973.
Inspire Record 83985 DOI 10.17182/hepdata.6770

Differential cross sections for π + p and π − p elastic scattering have been measured with an accuracy of typically ±2% at 10 and 9 energies respectively in the range 88 to 292 MeV of lab kinetic energy.

1 data table match query

No description provided.


Measurement of the pi- p elastic scattering cross-section near 180 degrees between 600 and 1280 mev/c

Richards, T.J. ; Crabb, D.G. ; Keller, R. ; et al.
Phys.Rev.D 10 (1974) 45-64, 1974.
Inspire Record 95569 DOI 10.17182/hepdata.4929

Differential cross sections for π−p elastic scattering over the angular range 155° to 177° in the center-of-mass system have been measured at 33 incident pion momenta in the range 600 to 1280 MeV/c. The experiment, which was performed at the Bevatron at the Lawrence Berkeley Laboratory, employed a liquid hydrogen target, a double-arm spectrometer, and standard counter techniques to detect the elastic events. The data from this experiment are compared to all other published data in this momentum region. The over-all agreement is good. The data of this experiment are also compared with the results of the recent phase-shift analysis by Almehed and Lovelace. In the momentum region between 700 and 900 MeV/c, the slope of the backward angular distribution goes rapidly through zero from negative to positive, and the magnitude of the differential cross section falls by more than a factor of 10. Momentum-dependent structure is seen in the extrapolated differential cross sections at 180°. Two prominent dips in the 180° differential cross sections appear at 880 and 1150 MeV/c. This structure is discussed in terms of a direct-channel resonance model that assumes only resonant partial waves are contributing to the cross sections for large scattering angles.

1 data table match query

No description provided.


CUSP IN PI- P ELASTIC SCATTERING AT THE ETA THRESHOLD

Sarma, H.N.K. ; Binnie, D.M. ; Carr, J. ; et al.
Nucl.Phys.B 161 (1979) 1-13, 1979.
Inspire Record 147683 DOI 10.17182/hepdata.34612

We present results from a high momentum resolution measurement of the π − p elastic differential cross section near the η production threshold. By analysing the cusp discontinuity in the elastic cross section we deduce the non-spin-flip elastic amplitude and compare it with solutions from phase-shift analyses.

1 data table match query

No description provided.


A Measurement of the Energy Dependence of Elastic $\pi p$ and $p p$ Scattering at Large Angles

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 425, 1978.
Inspire Record 6233 DOI 10.17182/hepdata.3359

We have measured π±p and pp elastic differential cross sections in the range |cosθc.m.|<0.35 for incident momenta from 2 to 9.7 GeV/c for π−p and pp and from 2 to 6.3 GeV/c for π+p. We find that the fixed-c.m.-angle πp differential cross sections cannot be described as simple functions of s. The data are compared to the energy and angular dependence predicted by the constituent model of Gunion, Brodsky, and Blankenbecler.

1 data table match query

No description provided.


Fluctuations in Large Angle $\pi^\pm p$ Elastic Scattering

Jenkins, K.A. ; Price, L.E. ; Klem, R. ; et al.
Phys.Rev.Lett. 40 (1978) 429, 1978.
Inspire Record 6210 DOI 10.17182/hepdata.76245

Large-angle π±p elastic-scattering cross sections, measured between 2 and 9 GeV/c in fine intervals of incident momentum and scattering angle, are used to search for cross-section fluctuations occurring for small changes in the center-of-mass energy as suggested by Ericson and Mayer-Kuckuck and by Frautschi. Significant fluctuations are observed.

1 data table match query

No description provided.


Pi- p backward elastic scattering between 1.28 and 3.0 gev/c

Ott, R.J. ; Trischuk, J. ; Va'vra, J. ; et al.
Phys.Lett.B 42 (1972) 133-135, 1972.
Inspire Record 85045 DOI 10.17182/hepdata.76247

The differential cross-section for π - -p elastic scattering over the angular range 125° to 178° center of mass has been measured between 1.28 and 3.0 GeV/ c . Considerable structure is found and is discussed in terms of direct channel resonances.

1 data table match query

No description provided.


Pi- p elastic scattering near 180 degrees from 2.15 to 6 gev/c

Meanley, E.S. ; Anthony, R.W. ; Coffin, C.T. ; et al.
Phys.Rev.D 6 (1972) 740-746, 1972.
Inspire Record 73970 DOI 10.17182/hepdata.3502

We present differential cross-section measurements for π−p elastic scattering in the backward direction, with −0.94>cosθc.m.>−1.0, for eleven beam momenta from 2.15 to 6 GeV/c.

1 data table match query

No description provided.


Pi+- proton elastic scattering at 180 degrees from 0.60 to 1.60 gev/c

Rothschild, R.E. ; Bowen, T. ; Caldwell, P.K. ; et al.
Phys.Rev.D 5 (1972) 499-505, 1972.
Inspire Record 74554 DOI 10.17182/hepdata.3523

The differential cross section for π±−p elastic scattering at 180° was measured from 0.572 to 1.628 GeVc using a double-arm scintillation-counter spectrometer with an angular acceptance θ* in the center-of-mass system defined by −1.00≤cosθ*≤−0.9992. The π+−p cross section exhibits a large dip at 0.737 GeVc and a broad peak centered near 1.31 GeVc. The π−−p cross section exhibits peaks at 0.69, 0.97, and 1.43 GeVc.

1 data table match query

No description provided.


Polarization in elastic pi- p scattering at 16 momenta between 865 and 2732 mev/c

Albrow, M.G. ; Andersson-Almehed, S. ; Bosnjakovic, B. ; et al.
Nucl.Phys.B 37 (1972) 594-620, 1972.
Inspire Record 75295 DOI 10.17182/hepdata.8091

Polarization distributions and differential cross section data for elastic scattering of negative pions on protons between 865 and 2732 MeV/ c are presented. They are compared with published phase-shift analyses.

1 data table match query

No description provided.


Measurements of the polarization parameter in pi+- p elastic scattering between 2.50 and 5.15 gev/c

Scheid, J.A. ; Booth, N.E. ; Conforto, G. ; et al.
Phys.Rev.D 8 (1973) 1263-1277, 1973.
Inspire Record 81836 DOI 10.17182/hepdata.3516

The polarization parameter in π±p elastic scattering has been measured at several momenta in the range 2.50-5.15 GeV/c pion laboratory momentum and covering the range in t approximately from -0.2 to -2.0(GeV/c)2. The data show positive polarization for π±p scattering, having a dip near t=−0.6 (GeV/c)2 and becoming relatively large at greater values of −t. The results for π+ and π− scattering are approximately equal in magnitude but of opposite sign. The data have been analyzed to separate the components, which are symmetric and antisymmetric with respect to pion charge, and to show both the t and s dependence of each part.

1 data table match query

No description provided.


Systematic Study of pi- p Backward Elastic Scattering Between 1.28-GeV/c and 3-GeV/c

Va'vra, Jaroslav ; Ott, R.J. ; Trischuk, J.M. ; et al.
Phys.Rev.D 16 (1977) 2687-2698, 1977.
Inspire Record 126661 DOI 10.17182/hepdata.24505

We have measured the backward differential cross section in π−p elastic scattering at 31 momenta from 1.28 to 3.0 GeV/c. These measurements covered the center-of-mass angular range of 125°-178° corresponding to −0.570≲cosθc.m.≲−0.999. Considerable structure in the angular distribution is found. We compare these data with data from other experimets and to predictions made by the latest phase-shift solution. We find, in general, good agreement with other data in the few regions of overlap. The fits from the phase-shift solution do not accurately reproduce these data at low momenta below 1.9 GeV/c but give excellent agreement above this momentum.

1 data table match query

No description provided.


$\pi^{\pm} p$, $K^{\pm} p$, $pp$ and $p\bar{p}$ Elastic Scattering from 50-GeV/c to 175-GeV/c

The Fermilab Single Arm Spectrometer Group collaboration Ayres, D.S. ; Diebold, R. ; Maclay, G.J. ; et al.
Phys.Rev.D 15 (1977) 3105, 1977.
Inspire Record 110409 DOI 10.17182/hepdata.24653

The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.

1 data table match query

No description provided.