We present a new measurement of the difference between the nucleon strange and antistrange quark distributions from dimuon events recorded by the NuTeV experiment at Fermilab. This analysis is the first to use a complete next to leading order QCD d escription of charm production from neutrino scattering. Dimuon events in neutrino deep inelastic scattering allow direct and independent study of the strange and antistrange content of the nucleon. We find a positive strange asymmetry with a significance of 1.6sigma . We also report a new measurement of the charm mass.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 88.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 174.
Neutrino forward dimuon cross sections for Y bins 0.32, 0.56 and 0.77 as a function of X for neutrino energy 247.
We present measurements of the semi-inclusive cross sections for νμ- and ν¯μ-nucleon deep inelastic scattering interactions with two oppositely charged muons in the final state. These events dominantly arise from the production of a charm quark during the scattering process. The measurement was obtained from the analysis of 5102 νμ-induced and 1458 ν¯μ-induced events collected with the NuTeV detector exposed to a sign-selected beam at the Fermilab Tevatron. We also extract a cross-section measurement from a reanalysis of 5030 νμ-induced and 1060 ν¯μ-induced events collected from the exposure of the same detector to a quad-triplet beam by the Chicago Columbia Fermilab Rochester (CCFR) experiment. The results are combined to obtain the most statistically precise measurement of neutrino-induced dimuon production cross sections to date. These measurements should be of broad use to phenomenologists interested in the dynamics of charm production, the strangeness content of the nucleon, and the Cabibbo-Kobayashi-Maskawa matrix element Vcd.
NuTeV forward cross section of neutrino induced events at mean energy of 90.18 GeV.
NuTeV forward cross section of neutrino induced events at mean energy of 174.37 GeV.
NuTeV forward cross section of neutrino induced events at mean energy of 244.72 GeV.
This Letter describes a measurement of the muon cross section originating from b quark decay in the forward rapidity range 2.4 < y(mu) < 3.2 in pbarp collisions at sqrt(s) = 1.8 TeV. The data used in this analysis were collected by the D0 experiment at the Fermilab Tevatron. We find that NLO QCD calculations underestimate b quark production by a factor of four in the forward rapidity region. A cross section measurement using muon+jet data has been included in this version of the paper.
The forward muon cross section (per unit rapidity).
The cross section for muons originating from b-quark decay.
Integrated cross sections for muons originating from b-quark decay. The statistical and systematic errors are added in quadrature.
We have made a precise measurement of the central inclusive jet cross section at sqrt(s) = 1.8 TeV. The measurement is based on an integrated luminosity of 92 pb-1 collected at the Fermilab Tevatron pbar-p Collider with the D-Zero detector. The cross section, reported as a function of jet transverse energy (ET >= 60 GeV) in the pseudorapidity interval |eta| <= 0.5, is in good agreement with predictions from next-to-leading order quantum chromodynamics.
Inclusive cross section for ABS(ETARAP)<0.5. The quoted systematic (DSYS) errors do not include the luminosity uncertainty of 6.1 PCT.
Inclusive cross section for 0.1<=ABS(ETARAP)<=0.7. Data are taken from the AIP E-PAPS ftp site shown above. The quoted (DSYS) errors are the total systematic errors including the luminosity uncertainty.
This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.
Only statistical errors are shown. Cross section tines branching ratio.
We present a measurement of the cross section for production of isolated prompt photons in p¯p collisions at √s =1.8 TeV. The cross section, measured as a function of transverse momentum (PT), agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Additional normalization systematic uncertainty of 27 pct for first eleven entries, and +32 pct(-46 pct) for last four entries.
The distributions of quarks in the pion and nucleon are extracted from measurements of the reaction π−N→μ+μ−X at 253 GeV/c in a naive Drell-Yan analysis, as well as QCD-corrected analyses at leading-log and next-to-leading-log order. As xπ→1 the pion structure function shows a term that varies as 1mμμ4, which we interpret as a higher-twist effect. Additionally, the angular distribution of the μ+ in the muon-pair rest frame tends towards sin2θ as xπ→1 and as mμμ→0 in a manner consistent with higher-twist effects. When the strongly mass-dependent higher-twist effects are included as part of the pion structure function, the nucleon structure function agrees well with leading-twist results from deeply inelastic lepton-hadron scattering. A significant advance of the present work is the extension of the analysis to low masses by the subtraction of the Jψ and ψ′ resonances from the continuum. Our analysis covers the kinematic range 0.4<xπ<1.0 and 0.02<xN<0.33 with 3.0<mμμ<8.55 GeV/c2. Cross sections for ψ′ production are presented in an appendix.
No description provided.
No description provided.
No description provided.
The x and Q 2 dependence of the single photon exchange cross section d 2 σ /d Q 2 d x and the proton structure functions F 2 ( x , Q 2 ) and R ( x , Q 2 ) have been measured in deep inelastic muon proton scattering in the region 0.02 < x < 0.8 and 3 < Q 2 < 190 GeV 2 . By comparing data at different incident muon energies R was found to have little kinematic dependence and an average value of −0.010 ± 0.037 (stat.) ± 0.102 (stat.). The observed deviations from scaling gave the value of Λ MS , the QCD mass scale parameter, to be 105 −45 +55 (stat.) −45 +85 (syst.) MeV. The fraction of the momentum of the nucleon carried by gluons was found to be ∼56% at Q 2 ∼22.5 GeV 2 . It is shown that to obtain a description of the data for F 2 ( x , Q 2 ) together with that measured in deep inelastic electron-proton scattering at lower Q 2 it is necessary to include additional higher twist contributions. The value of Λ MS remains unchanged with the inclusion of these contributions which were found to have an x -dependence of the form x 3 /(1 − x ).
No description provided.
No description provided.
No description provided.
The production of J/ ϑ and ϑ′ has been measured in 250 GeV muon iron interactions. The measured total cross sections are σ ( μ N → μ J/ ϑ X)=0.74±0.14 nb and σ ( μ N → μϑ ′X)=0.16 ± 0.07 nb. An upper limit on the cross section times branching ratio for ϒ production of BR · σ ( μ N → μϒ X) < 5.2 × 10 −38 cm 2 (at 90% confidence level) is obtained. About half the J/ ϑ cross section is found to have Z ⩾ 0.95 (where Z = E (J/ ϑ / ν ). The first-order photon-gluon fusion model agrees well with the measured Q 2 and ν dependence of the J/ ϑ data and is used to extract the gluon momentum distribution. However, higher order QCD effects are needed to explain the Z distribution of the J/ ϑ and the observed broadening of the P t 2 distribution with decreasing Z . The decay angular distributions of the J/ ϑ are found to be flat in the s -channel frame, but there is evidence for polarisation in the t -channel frame.
NUMBERS ARE CROSS-SECTIONS FOR PSI AND PSI(PRIME) BUT CROSS-SECTION*BR.RATIO FOR THE UPSILON.
THE COHERENT PRODUCTION IS NOT SUBTRACTED.
THE COHERENT PRODUCTION IS SUBTRACTED.
We report results from a measurement of the inclusive processes pp→Xp and pd→Xd in the range 5<Mx2s<0.1, 0.01≲|t|≲0.1 (GeV/c)2, and incident proton momenta of 65, 154, and 372 GeV/c. Both pp and pd data show an exponential t dependence and a dominant 1Mx2 behavior for Mx2s≲0.05. By comparing pp and pd data we test factorization and, using the Glauber model, we measure the XN total cross section, σXN=43±10 mb.
No description provided.
No description provided.
No description provided.